
On the Rise of Modern Software Documentation1

Marco Raglianti #2

USI, Lugano, Switzerland3

Csaba Nagy #4

USI, Lugano, Switzerland5

Roberto Minelli #6

USI, Lugano, Switzerland7

Bin Lin #8

Radboud University, Nijmegen, the Netherlands9

Michele Lanza #10

USI, Lugano, Switzerland11

Abstract12

Classical software documentation, as it was conceived and intended decades ago, is not the only13

reality anymore. Official documentation from authoritative and official sources is being replaced by14

real-time collaborative platforms and ecosystems that have seen a surge, influenced by changes in15

society, technology, and best practices. These modern tools influence the way developers document16

the conception, design, and implementation of software. As a by-product of these shifts, developers17

are changing their way of communicating about software. Where once official documentation stood as18

the only truth about a project, we now find a multitude of volatile and heterogeneous documentation19

sources, forming a complex and ever-changing documentation landscape.20

Software projects often include a top-level README file with important information, which21

we leverage to identify their documentation landscape. Starting from ∼12K GitHub repositories,22

we mine their README files to extract links to additional documentation sources. We present a23

qualitative analysis, revealing multiple dimensions of the documentation landscape (e.g., content24

type, source type), highlighting important insights. By analyzing instant messaging application25

links (e.g., Gitter, Slack, Discord) in the histories of README files, we show how this part of the26

landscape has grown and evolved in the last decade.27

Our findings show that modern documentation encompasses communication platforms, which28

are exploding in popularity. This is not a passing phenomenon: On the contrary, it entails a number29

of unknowns and socio-technical problems the research community is currently ill-prepared to tackle.30

2012 ACM Subject Classification Software and its engineering → Collaboration in software devel-31

opment; Human-centered computing → Collaborative and social computing32

Keywords and phrases software documentation landscape, GitHub README, instant messaging33

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.4234

1 Introduction35

Times are changing. This is even more true for software engineering. Major shifts have36

occurred, induced by the emergence of platforms like GitHub and StackOverflow, fundament-37

ally changing how developers (and users) communicate about software projects: Mailing lists38

and forums are declining in favor of multi-media instant messaging platforms, such as Gitter,39

Slack, Discord, and GitHub Discussions, e.g., [10, 19,28,31,34,46,47,50,51,56,58,66,67].40

Software documentation, a critical asset for developers [3], has been studied extensively41

with respect to its quality and usefulness [4, 11,15,20,22,54,61,79]. Nevertheless, the impact42

of the subtle but constant drift induced by new platforms is still to be evaluated. What are43

the implications for program comprehension if a tweet can influence how developers treat a44

© Marco Raglianti, Csaba Nagy, Roberto Minelli, Bin Lin, and Michele Lanza;
licensed under Creative Commons License CC-BY 4.0

37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No. 42; pp. 42:1–42:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.raglianti@usi.ch
https://orcid.org/0000-0002-6878-5604
mailto:csaba.nagy@usi.ch
https://orcid.org/0000-0001-8109-3293
mailto:roberto.minelli@usi.ch
https://orcid.org/0000-0002-1549-6489
mailto:bin.lin@ru.nl
https://orcid.org/0000-0001-6307-8460
mailto:michele.lanza@usi.ch
https://orcid.org/0000-0003-4391-0197
https://doi.org/10.4230/LIPIcs.ECOOP.2023.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 On the Rise of Modern Software Documentation

bug [39]? Can the tweets on the usage of an API also serve as documentation? Classical45

software documentation, as we have known it, is being replaced by “communication”.46

Documentation went from a clunky, and rather unloved, endeavor to becoming a fast-paced47

and volatile side dish. The utopia of “on-demand documentation” by Robillard et al. [55], is48

being replaced by a dystopia of an ever-changing landscape; documentation is waved away49

with sentences like “check Discord” or “it’s in the pull request comments.”50

This change is more than just cosmetic, it is considerably affected by the richness of51

new media, influencing the cognitive processes that underlie communication [53]. Modern52

media-rich platforms offer vastly different mechanisms which are simply not there in classical53

electronic communication means. Moreover, developers do not only hold ephemeral discussions54

that they must be able to access now. They share knowledge (e.g., code examples, screenshots,55

howtos) that is important for them in the future, and they do not have (or rather: take) the56

time to persist it in a classical software documentation form (e.g., Wiki). Instant messaging57

is just too enticing for that. But, they will need long-term access to this knowledge and want58

to keep it searchable1 [21] and organizable2 [45]. They choose their platforms accordingly,59

for example, avoiding limitations in retrievable history [2], and are willing to pay significant60

sums for such services [13].61

As the cards on documentation are being reshuffled, things seem murky: What happens62

to the body of knowledge contained in the repositories of classical communication platforms?63

What is the impact on standard software documentation? How do developers use modern64

platforms, and what does this imply?65

The Spectrum Example. Spectrum, a multi-forum community hosting platform, was hosting
dozens of software related communities about frameworks (e.g., React, Laravel), UI design (e.g.,
Figma), front-end coding (e.g., CodePen), and developers’ networks in general (e.g., SpecFM).
On Aug 24, 2021, to preserve history while pushing forward the adoption of new communication
infrastructures, it was announced that “the time has come for the planned archival of Spectrum
to focus our efforts on GitHub Discussions” [37]. Spectrum has become “read-only – no 404s
or lost internet history.” The Spectrum team acknowledged the importance of conversations
held on the platform and tried to avoid the limitations of relying on the Internet Archive for
preservation [71]. Many Spectrum communities had already moved to GitHub Discussions, for
reliability and flexibility reasons: Having code and the community in the same place outweighed
other factors in the decision to change.

66

We present an overview of the documentation landscape (i.e., a map of potential doc-67

umentation sources) emerging from the analysis of ∼12K GitHub projects. We explore68

current trends in documentation platforms and the relationship between documentation and69

communication platforms, exemplified by the tendency in a project’s README to include70

the latter as an indirect source of the former.71

We show the most representative values in different dimensions characterizing the land-72

scape. We then proceed more in-depth with the history of modern communication platforms.73

We show how some platforms have seen increasing adoption, reached a plateau, and finally74

started their decline. Our analysis provides insights into the many implications of this75

ongoing phenomenon for software documentation. Finally, we discuss possible features that76

future platforms should have to mitigate some of the perils introduced by these continuous77

shifts. We use the following icons to highlight salient points:78

Û Insight � Idea/Future Work . Threat79

1 Especially for large communities, without limitations, as reported in this blog post.
2 As demonstrated by the presence of an ecosystem built on top of instant messaging applications.

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:3

DwarvenMail

Miner

Annotator

History Extractor

Community Extractor

README Communication Platforms
Extractor

README HistoriesSEART
GHS

Manually
Annotated

Dataset

GitHub

GitHub

Slack Discord

Sec.
6.1–6.2

Link Analysis

Communication
Platforms Analysis

Instant Messaging
Analysis

Community Size
Analysis

Sec. 2.1

Sec. 2.3

Sec.
3

Sec. 2.4

Sec. 2.6

Sec.
4–5

Sec.
6.3–6.4

Sec. 2.5

Sec. 2.2

Figure 1 DwarvenMail and Analyses Overview

2 Dataset Creation and DwarvenMail80

This section details the procedure and tool support (DwarvenMail) we implemented to81

collect the data for our analyses (Figure 1). We present the initial dataset, the mining82

procedure, our manual annotation, and details about the individual analyses we performed.83

2.1 Project Mining84

Starting from all repositories currently hosted on GitHub we used SEART-GHS [14] to85

compose a relevant dataset, applying the following filtering criteria: at least 2,000 commits86

(i.e., to eliminate toy projects), more than 10 contributors (i.e., to ensure that a certain87

number of people need to interact with each other to tackle the development effort), and88

more than 100 stars (i.e., to ensure that the projects are relevant to at least a handful of89

people). We only considered projects created before July 1, 2022 and excluded forks [23].90

SEART-GHS currently monitors about 1.2M GitHub repositories. Projects excluded in91

SEART-GHS for having less than 10 stars [14] would have been excluded by the more92

restrictive criterion we applied, removing projects with less than 100 stars.93

. Filtering based on the number of stars might not be sufficient to select relevant projects.
Nevertheless, starring can be important for project developers and mangers [9]. We used
this criterion as a common method for filtering out toy projects in GitHub (e.g., see [80]).

94

We performed the filtering on July 14, 2022, resulting in 12,461 projects exported as95

JSON input for DwarvenMail. After removing 374 aliases and 6 renamed forks, the final96

scraped dataset consists of 12,081 projects.97

ECOOP 2023

42:4 On the Rise of Modern Software Documentation

Table 1 presents an overview of the projects according to their languages. The All column98

shows the total number of projects, the CP column the projects where we could identify99

communication platforms (see Section 2.4), and the IM column the projects with instant100

messaging platforms. Percentages are derived with respect to the All column, while ∆101

percentages are relative to the Total row percentages.102

Overall, 57.3% of the projects we analyzed feature at least one communication platform.103

An interesting observation is that systems written in “lower level / traditional” languages (C,104

PHP, Shell) tend to be below the overall average, while systems written in more “modern”105

languages (C#, Go, Rust, TypeScript) are more inclined to feature communication platforms.106

The difference is even more evident for recently popularized languages if we consider projects107

with instant messaging platforms (e.g., Go and Rust increase from +8.1% to +11.6% and108

from +9.5% to +16.7% respectively).109

We performed multiple One Proportion Z-Tests (one for each language) and the difference110

in the proportion of projects using communication platforms for each language (r) and111

the overall dataset (r0) is statistically significant for C, C#, Go, PHP, Rust, Shell, and112

TypeScript (H0 : r = r0, two-tailed Bonferroni corrected p-value < 0.0038). The same results113

hold for projects with instant messaging platforms.114

Table 1 Projects and Represented Languages

Language Projects
All CP CP % ∆CP% IM IM % ∆IM%

C 1,240 548 44.2% -13.1% 248 20.0% -9.2%
C# 543 378 69.6% +12.3% 214 39.4% +10.2%
C++ 1,707 926 54.2% -3.1% 469 27.5% -1.7%
Go 677 443 65.4% +8.1% 276 40.8% +11.6%
Java 1,510 860 57.0% -0.4% 432 28.6% -0.6%
JavaScript 1,528 899 58.8% +1.5% 440 28.8% -0.4%
PHP 733 379 51.7% -5.6% 165 22.5% -6.7%
Python 1,806 1,094 60.6% +3.3% 557 30.8% +1.7%
Ruby 406 238 58.6% +1.3% 103 25.4% -3.8%
Rust 244 163 66.8% +9.5% 112 45.9% +16.7%
Shell 205 93 45.4% -11.9% 35 17.1% -12.1%
TypeScript 895 575 64.2% +6.9% 314 35.1% +5.9%
Other / Unspecified 587 328 55.9% -1.4% 160 27.3% -1.9%
Total 12,081 6,924 57.3% 3,525 29.2%

2.2 Tool Support: DwarvenMail115

To support our analyses, we developed DwarvenMail, a Python application to scrape116

GitHub and extract information about projects’ README files and their history. It features117

an object-oriented domain model to facilitate the extraction of insights from exploration.118

DwarvenMail also supports manual inspection, link extraction, and classification from119

README files (see Section 2.3). DwarvenMail takes the list of projects in the dataset120

and uses the REST API of GitHub and web scraping [81] to extract the information needed121

to build its internal domain model. It is implemented as a multiprocess application to speed122

up the scraping. Each process uses a different API key to access GitHub in parallel through123

PyGitHub [24]. Parallelization is handled at project level: Each process gets a project from124

a queue and starts to fetch the data. Processes are also responsible for not exceeding GitHub125

rate limits associated with their API keys.126

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:5

2.3 Manual Annotation127

To examine the documentation sources and communication platforms of the projects, we128

performed a qualitative analysis of their README files. We relied on open card sorting,129

a well-established method for knowledge elicitation and classification [8, 42, 63, 76, 77], to130

incrementally refine the list of possible sources with flexible categories.131

We manually reviewed the README files of the projects, extracted their links to132

documentation sources and organized them into categories. Given the considerable effort133

needed to annotate README files manually, we opted for a saturation approach [57]. We134

started with a sample set of 35 projects selected through stratified sampling, ensuring a135

balanced distribution among programming languages.136

Two authors independently annotated each project README. Then we repeated the137

process in subsequent batches with 5 projects per batch until no new labels were added in138

two consecutive batches. We reached saturation after annotating 60 projects. In the end,139

we discussed conflicts and merged categories where needed. The process resulted in 2,349140

links with 282 link types, which we discuss in Section 3. The creation of manually annotated141

datasets was supported by the Annotator module of DwarvenMail (Figure 2).142

Figure 2 DwarvenMail Annotator – Project Annotation Page

An annotator ran the Flask application locally, pulled from Git the latest updates by143

other annotators, started a batch of annotations, committed, and pushed the modified files.144

The Annotator’s homepage shows a list of projects to annotate and the annotation status145

(i.e., who annotated what). Selecting a project opens the project annotation page (Figure 2)146

where one can browse the README of the selected project.147

The project annotation page uses two side-by-side panes to present the README. The148

left one represents the raw Markdown version of the README. The right pane shows a149

partially rendered version (i.e., similar to what a user sees on GitHub).150

ECOOP 2023

42:6 On the Rise of Modern Software Documentation

2.4 Parsing Links: Strategy & Heuristics151

We performed a quantitative analysis of communication platforms in README files (Sec-152

tions 4 and 5). To support automatic platform extraction in such a large number of projects153

we used an approach based on Regular Expressions (RE).154

For each communication platform that we discovered, we devised REs that would match155

the link as closely as possible, while retaining sufficient generality to abstract specific aspects156

(e.g., project name, internet domain, optional protocol). Possibly more than one RE has been157

associated with each platform. To fine-tune the REs, DwarvenMail features a detailed log158

generation for manual inspection of candidate and invalid links during the refinement.159

DwarvenMail parses all the links in a README according to the set of identified REs.160

When a link is found, specific exclusion criteria are applied. A set of rules removes links161

to images, badge icons, platforms’ generic homepages, and partial or invalid URLs (e.g.,162

shorthands for Markdown sections captured by the REs).163

The remaining links are normalized in a standard format and duplicates are removed.164

Platforms not directly linked in the README (e.g., collected in a list on the Community165

page of the project website) are omitted by the employed scraping algorithm. To reduce the166

false positive rate, DwarvenMail also verifies that links point to valid web pages (i.e., the167

server does not respond with an HTTP 404 Not Found). After this refinement, we obtain the168

final set of communication platforms referenced by the project READMEs.169

2.5 Parsing README Histories170

For projects referencing Gitter, Slack, and Discord as communication platforms, we analyzed171

the history of their READMEs to discover when those platforms appeared for the first time.172

In this case, the approach outlined above to exclude invalid links (Section 2.4) would not173

produce the desired results, because a link that is not valid today could have been valid in174

the past. This cannot be checked without an archive, or historical information. Hence, in175

our approach we assume that links with proper format were valid in the past. To reduce176

false positives, we used the most specific format able to capture the link.177

2.6 Community Size178

We include the Discord and Slack community size (i.e., number of members) in our domain179

model. The most popular way to add people to a Discord server is through an invite link [16].180

Clicking on an invite link, brings the user to a page with metadata about the server (e.g.,181

number of total members, number of online members). We gathered Discord community182

sizes by scraping the data from these invite pages. In the case of Slack, only 15% of the183

projects in our dataset have information about the community size on the invite page.184

� More effort is needed to explore communities that do not conform to a standard
and/or customize their invite link to pursue specific goals (e.g., authorization workflow,
authentication, spam prevention, analytics).

185

Extending the percentage of projects whose community size is correctly scraped could186

improve the reliability of results discussed in Sections 6.3 and 6.4.187

2.7 Data Availability and Replication Package188

We provide a replication package, publicly available on Figshare [7], containing the source189

code of DwarvenMail, the input dataset, the manually annotated projects, the serialized190

domain model of the scraped dataset, charts and tables exported from DwarvenMail.191

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:7

3 Documentation Landscape192

We define the documentation landscape of a software system as all the possible sources193

of information able to support design, implementation, comprehension, maintenance, and194

evolution of the system. Software documentation is a fundamental asset for developers and195

practitioners [3], when it is correct and up-to-date [11,15,20,22,54,61], with its costs and196

benefits [79]. Modern software documentation is an ever expanding field. New sources include197

blogs [44], Twitter [72], StackOverflow [48], instant messaging applications [10, 19,31, 34,46,198

47,50,51,56,58,66,67], news aggregators [6], and forums [28].199

GitHub README files in Markdown (.md) format are a good starting point for a project200

from where all relevant documentation should be reachable.201

Documentation sources in README files can either be directly referred to or behind202

multiple steps of indirection. An example of the former case is an invitation link that can203

be copy/pasted directly in Discord to access the community server of the project. In the204

latter case, the README could point to a community web page which in turn contains205

links to the mailing list, a Slack channel for Q&A, and potentially other communication and206

documentation sources.207

The manual annotation presented in Section 2.3 produced 282 single type link tags. The208

links can come in many flavors thanks to the markdown format, ranging from pure textual209

hyperlinks to badges and images that link to external resources. We inspected them and210

identified three key dimensions of the documentation landscape: content type, source type,211

and source instance. We split single type tags into these three dimensions. We analyzed212

examples of each link type to disambiguate or enrich the classification when the original213

annotation had missing information.214

Table 2 shows the top-15 most representative values for each dimension. The complete215

list of tags is available in the replication package [7].216

Û The three key dimensions we propose to describe the documentation landscape of a
software system are content type, source type, and source instance, exemplified as links
in GitHub READMEs.

217

Source type, source instance, and content type could describe a link like: “This link is in218

the form of a Badge, it points to a Wiki on Travis.com, and contains information related219

to CI / CD.” Each dimension is instantiated with one of the possible tags for that category,220

forming a signature of the documentation source pointed by the link.221

� Exploring these dimensions could improve the automatic extraction of links and their
features, to characterize and understand the (evolution of the) documentation landscape.222

Link format: Link formats come in many flavors, also due to the fact that markdown223

files, while being textual, are usually inspected using a (multimedia capable) web browser.224

Badges, for example, are very common in GitHub README files, used to convey imminent225

information through iconic representation of a summary of the pointed resource (e.g., build226

status passing) where the link itself allows, if followed, to reach more extensive information227

(e.g., build process report). Masked links are another common practice to add links (not228

exclusively) to markdown documents.229

. Not all links in a raw README file are human readable links in the rendered README.230

Content type: This is the primary dimension of the documentation landscape, denoting231

what kind of information is present in the landscape. There is a smooth gradient in content232

types regarding the number of links, but it is worth noting that there is no “standard”, but233

ECOOP 2023

42:8 On the Rise of Modern Software Documentation

Table 2 Top-15 Most Relevant Tags, Number of Projects, and Links for Each Dimension. The
percentage indicates the ratio of projects containing at least one link with the specified tag.

(a) Content Type

Projects Content Type Links
36 (60%) General Community Hub 141
29 (48%) Official Documentation 97
28 (47%) License 68
25 (42%) Contributing 56
23 (38%) Issues 52
23 (38%) CI/CD 50
21 (35%) Project Repository 76
20 (33%) Relevant Projects 132
20 (33%) Dependency/Environment 84
19 (32%) Releases 60
16 (27%) In-Repository Resource 67
16 (27%) Package Repository 47
14 (23%) CI/CD > Testing 24
13 (22%) Installation Instructions 24
11 (18%) Code Coverage 22

(b) Source Type

Projects Source Type Links
55 (92%) Homepage/Website 436
41 (68%) Collaborative Platform 188
36 (60%) Third Party Service 169
34 (57%) Wiki 125
32 (53%) Repository 166
28 (47%) Sourcefile/Sourcefolder 151
25 (42%) Instant Messaging 84
11 (18%) Auxiliary README 21
10 (17%) Readme Section/Anchor 44
9 (15%) Mailing List 27
9 (15%) Forum 20
8 (13%) Image/GIF 21
8 (13%) Blog 20
7 (12%) Email Address 12
6 (10%) Video 13

(c) Source Instance

Projects Source Instance Links
33 (55%) GitHub 179
16 (27%) GitHub Workflows 50
13 (22%) GitHub Releases 27
12 (20%) Travis 22
11 (18%) Gitter 34
9 (15%) Google Groups 24
7 (12%) Discord 18
7 (12%) Codecov 14
7 (12%) Python Package Index 13
6 (10%) Twitter 12
6 (10%) StackOverflow 9
5 (8%) Slack 18
5 (8%) Maven 11
5 (8%) Read the Docs 5
4 (7%) GitHub Profile 108

rather project-specific landscapes. Most relevant are general community hubs: Discord servers,234

Slack workspaces, Gitter rooms, IRC channels, mailing lists, and forums, with their internal235

structure for different topics, dedicated to a general community of users and practitioners.236

Û Content type is relevant to interpret what a piece of documentation is about. There is
no standard to the documentation landscape, each project develops its own. Even the
top content types (community hubs, official documentation) are present in only half of
the projects.

237

Source type: The source type dimension refers to the format of the content at the238

link’s destination. This dimension is relevant for automatically extracting the documentation239

landscape since it determines how the content can be retrieved and parsed. Homepage /240

websites, the most relevant source type by a large margin, can be scraped with traditional web241

scraping techniques. Collaborative platforms like GitHub and Bugzilla could be addressed242

via their custom APIs. Image / GIF > Screenshots, further down in terms of relevance,243

would benefit from image segmentation and analysis approaches to extract, for example,244

documented user interface features. We also notice that links to mailing lists are fewer than245

those to IM applications, a trend we analyze in more detail in Section 4.246

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:9

Û Source type captures how documentation is presented and how it can be accessed.
Almost all projects feature a head quarters website, i.e., the go-to place to learn about
a project. These starting points are then often complemented by a plethora of other
sources, ranging from Wikis to forums and instant messaging platforms.

247

When analyzing the evolution through time of a README file we detect in many cases248

that the source types come and go, inducing “tectonic movements” in the landscape, as we249

can observe in the example depicted in Figure 3.250

Figure 3 Evolution of Communication Platforms in the “Scikit-learn” Project

The Scikit-learn project, born in 2010, sees a mailing list as its initial documentation251

landscape, complemented shortly after by an IRC channel (which stopped existing a decade252

later). GitHub Issues is added within the project’s first year, while StackOverflow becomes253

part of the landscape in 2017. It is within the past 2 years that the landscape experiences254

an earthquake, with many new sources appearing, while the IRC channel is removed (it is255

worth noting that IRC and its successor, Gitter, co-exist for a year). At the time of writing256

the project in question features 11 different sources.257

Û The documentation landscape of projects evolves together with the project. Especially
in the past few years the source types have exploded in number, rendering the landscape
highly dispersive.

258

. The fact that there are more sources does not imply that the overall documentation of
the system is better, on the contrary: We have observed an overall trend toward more
volatile sources, mostly due to the rise of instant multimedia messaging platforms.

259

Source instance: The third dimension is a derivate of source type. For each type we260

can have multiple possible source instances, usually of a competing nature (see Section 5)261

with a similar purpose. Rather unsurprisingly for GitHub projects, GitHub itself with related262

instances of profiles, workflows, releases, and instant messaging (i.e., Gitter) takes top263

three, the 5th, and the 15th places. Services for package repositories (e.g., Python Package264

Index [49], Maven [62]) and CI/CD (e.g., Travis CI [73], Codecov [12]), messaging applications265

like Slack [60]/Discord [17], and also articles on the Medium platform [1] represent interesting266

research avenues.267

Û Source instance can be seen as where (or by whom) documentation is “hosted.”268

. Source instances vary wildly, and new players constantly enter the stage. For example,
recent changes in the pricing model of Slack might have influenced the ongoing mass
migration toward other instant messaging platforms, of which there are dozens, with
Discord quickly becoming the preferred alternative.

269

ECOOP 2023

42:10 On the Rise of Modern Software Documentation

� Tags in the three dimensions appear in different combinations, not all equally likely.
Further research on the most common patterns could shed light on form and content
interplay in software documentation.

270

4 Modern Communication Platforms271

One of the recent major shifts in software development has been the emergence of various272

multimedia instant messaging platforms, such as Slack [60], Discord [17], and Gitter [40].273

They not only experienced an increase in popularity but also seem to be a major suspect274

for the decline of other classical communication means, such as mailing lists and forums.275

We start by analyzing the platforms actually used by projects in our dataset. The scraping,276

based on regular expressions (see Section 2.4), took place between Aug 28 2022 at 21:01 and277

Aug 30 2022 at 02:12, leading to 12,081 scraped projects. Of those, 6,924 (57.3%) mention at278

least one such modern communication platform in their README files: 2,897 had 1 platform279

link, while 4,027 had 2 or more platform links. The remaining 5,157 projects had no platform280

links. The percentage is higher than the one reported by Käfer et al. [32] (57.3% vs. 46.7%),281

which can be explained by the fact that their analysis dates back 4 years.282

We grouped communication platforms into three main categories: asynchronous, instant283

messaging, and social media.284

Figure 4 summarizes number of links in READMEs (Links) and number of projects with285

at least one link (Projects) for each type of platform.286

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

Asynchronous
Instant

Messaging
Social
Media

Projects

Links

Figure 4 Platform types.

Platform

3,500

3,000

2,500

2,000

1,500

1,000

500

0

Pr

oj
ec

ts

G
ith

ub

Tw
itt

er

D
is

co
rd

G
itt

er

Fo
ru

m

M
ai

lin
g

Li
st

S
la

ck

Yo
uT

ub
e

IR
C

S
ta

ck
O

ve
rfl

ow

M
ed

iu
m

Te
le

gr
am

R
ed

di
t

M
at

rix

Yo
uT

ub
e

C
ha

nn
el

Fa
ce

bo
ok

Li
nk

ed
In

S
pe

ct
ru

m

M
ai

lto

Figure 5 Number of projects linking at least one platform.

There are Instant Messaging platforms (e.g., IRC, Slack, Discord), where communication287

can happen in real-time. In Asynchronous platforms (e.g., forum, mailing list, GitHub issues288

or discussions), communication usually takes some time to be processed and made available289

to other community members. The boundary between the two types has been blurred in290

the recent years by the technological improvements to the supporting infrastructure. We291

also considered Social Media platforms (e.g., Facebook, Twitter, Youtube). While their292

technical features can overlap with the other types, their huge user-base and ease of forming293

social connections make them stand out. Table 3 shows a complete list of the platforms we294

considered with a short description.295

A project README can have multiple links to a single platform. This is particularly296

true for Social Media links where Twitter accounts of the main contributors or maintainers297

are all referenced.298

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:11

Table 3 Communication Platforms

Platform Description
Discord [17] Voice, video, text messaging multimedia platform
Facebook [38] Social media and social networking service
Forum General category for web based discussion sites
GitHub [25] GitHub infrastructure for project development
Gitter [40] Voice, video, text messaging multimedia platform
IRC Text-based instant messaging chat system
Linkedin [36] Business social media & professional networking
Mailing List E-mail based communication among recipients
Matrix [70] Communication protocol implemented by clients
Medium [1] Online publishing platform and social journalism
Reddit [52] Social news aggregation, rating, discussion, and multimedia sharing
Slack [60] Voice, video, text messaging multimedia platform
Spectrum [37] Text-based web instant messaging chat system
StackOverflow [64] Question and Answer website
Telegram [69] Voice, video, text messaging multimedia platform
Twitter [75] Social media and social networking service
Youtube [26] Video hosting and sharing platform

In Figure 4, we see that the number of projects that use a specific platform is significantly299

lower than the number of links. For example, project OpenAPITools/openapi-generator [43]300

mentions 20 different Twitter accounts and 17 YouTube resources.301

The identified categories are only a rough means to group similar platforms. In Figure 5302

we show the number of projects having at least one reference to a specific platform.303

Given our initial input set, it is not surprising to find GitHub to be the most referenced:304

The infrastructure is integrated enough to warrant support for the community with its own305

Issues and Discussions systems. This uniform consensus is followed by a more fragmented306

mix of Twitter, Discord, Gitter, Forums, Mailing Lists, and others in decreasing order of307

“popularity.” Far from being irrelevant, these platforms are used by hundreds of projects308

exclusively or in synergy. The next section sheds light on these synergies, complementarities,309

and on the competition between similar platforms.310

5 Coexistence and Competition311

Communication platforms can have different features and cater to different audiences. To312

cover development or users’ needs, projects can opt for using multiple media at the same313

time. What choices are made by core developers in terms of number and variety of platforms314

to include in a README?315

Figure 6 depicts a non-exhaustive list of examples of overlaps between communication316

platforms (extracted with the REs presented in Section 2.4) used exclusively and side-by-side.317

Around 38% of projects that use either Discord or Slack also include GitHub Issues in318

their READMEs (Figure 6a).319

. GitHub Issues can also be used without an explicit link in the README, as just a tab
of the project, if enabled. Some platforms may be implicitly assumed to be available
even if not present in the README.

320

Overall, 2,105 out of 3,208 projects (66%) using GitHub Issues, also have other commu-321

nication platforms referenced in the README. Similar ratios are found, for example, for322

Discord with 801 out of 1,187 projects (67%).323

Û Multiple communication platforms of different types can and do coexist.324

GitHub has significant overlaps with the whole category of instant messaging, and with325

ECOOP 2023

42:12 On the Rise of Modern Software Documentation

Discord
Slack

GitHub Issues

(a)

Instant Messaging

GitHub Issues

Stack Overflow

(b)

Social Media

Instant MessagingAsynchronous

(c)

Discord
Slack

Gitter

(d)

Figure 6 Communication Platforms Overlaps.

specific asynchronous platforms (e.g., StackOverflow, see Figure 6b). However, 1,270 projects326

rely only on the integrated support provided by GitHub.327

In general, if we consider the three main categories, we find that asynchronous platforms328

are used exclusively in 48% of projects, instant messaging follows with 35%, and social329

platforms seem the most frequently used as a complementary option (76%, see Figure 6c).330

. It is not clear if different categories are mutually exclusive and why in a considerable
amount of projects they tend to be used in conjunction.331

� This analysis should be complemented by how the user-base is distributed over these
platforms.332

6 Instant Messaging: A Deep Dive333

What makes instant messaging platforms appealing to developers? The steady growth in334

the number of projects including at least one platform of this kind is a piece of evidence335

supporting the need for fast and rich communication.336

Instant messaging platforms fulfill a very specific role: Providing communication in337

real-time, possibly with rich media sharing capabilities (e.g., links, videos, files), and Voice338

over IP conferencing (i.e., VoIP). Two instances of these platforms are seldom found together.339

Similar characteristics, audiences, and usages make competition the prevailing paradigm.340

Figure 6d shows that 97% of projects opting for these platforms choose between one of the341

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:13

three alternatives. Three projects include links (see Section 2.4) to all the platforms and also342

other instant messaging (e.g., Spectrum), but only PowerShell/PowerShell has a significant343

Discord community (more than 10k members).344

Û Gitter, Discord, and Slack are selected by projects as alternatives, very seldom coexisting.
This can be a possible strategy for successful projects not to spread their community too
thin over multiple platforms with similar capabilities.

345

6.1 Gitter, Discord, and Slack: A Timeline346

Based on README history and mining links for each version of the README as detailed347

in Section 2.5, for each project, we look for the first appearance date of Gitter, Discord, and348

Slack (Figure 7).349

Date (Year)

1,200

1,000

800

600

400

200

0

N
um

be
r o

f P
ro

je
ct

s

Figure 7 Timeline of cumulative adoption date of Slack, Discord, and Gitter.

Gitter appeared for the first time at the end of 2013, followed one year later by Slack,350

and then Discord after 8 months. All three platforms show a “ramp-up” period of slightly351

more than one year after their first appearance, followed by a steady growth at different352

rates. Both Gitter (in mid-2020) and Slack (in 2022) reached a plateau where just a handful353

of projects added them to their communication platforms in the last year. Discord, on the354

other hand, is still growing significantly.355

Since the beginning of 2020, Discord consistently outperformed Slack in terms of number356

of new projects adopting the platform for their community (Figure 8). The monthly growth357

rate has been higher than the highest for Slack in the previous years. It has also been at358

higher levels more consistently and for a longer period.359

The comparison between additions of Gitter and Discord (Figure 9) shows a similar or360

even more evident tendency. The decline of the former and the growth of the latter are361

almost perfectly mirroring each other.362

Û While one platform stops being added to projects, another is on the rise. This happened
in the past and is bound to happen again in the future.363

There is no guarantee that the example of the Spectrum platform we highlighted in364

Section 1 will be followed when Gitter goes out of fashion. It is also possible that the entire365

history of discussions, bug fixing sessions, and design decisions will just disappear.366

ECOOP 2023

42:14 On the Rise of Modern Software Documentation

2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 8 Monthly new projects adopting Discord and Slack.

2014 2015 2016 2017 2018 2019 2020 2021 2022
Date (Year)

N
um

be
r o

f n
ew

 p
ro

je
ct

s

Figure 9 Monthly new projects adopting Gitter and Discord.

6.2 Throughput and Volatility367

We investigated four Discord communities. Reactiflux, Vue Land, and Angular.js are368

respectively tied to React, Vue, and Angular (web development frameworks). We compared369

them with each other and with the Discord.js community (Discord bot development).370

In Figure 10, we show how the average number of messages per member in a sample371

period of three months (i.e., May–July, 2022) has high variability. While this might be due372

to a number of factors, we are interested in the sheer scale of the messages exchanged on373

those platforms every day.374

Around 550 messages are exchanged per day in Vue Land and Angular.js. In Discord.js,375

instead, users exchange 305 messages each hour, totaling more than 7k messages a day.376

The throughput of these servers means information is lost if one does not pay attention to377

notifications. Only a few messages are visible at a time and they scroll up quickly, putting full378

conversations behind the event horizon in a matter of minutes. Alert filters and community379

policies (e.g., forbidden mentioning of server wide tags) can only partially mitigate this380

problem. The trade-off between losing potentially interesting discussions and being constantly381

interrupted by notifications is the choice many modern developers face when dealing with382

these kinds of communities.383

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:15

Figure 10 Messages per day and average messages per day per member from May to July 2022
for four example Discord servers.

� Application of summarization, visualization, and information retrieval techniques is
fundamental to deal with scalability problems of these platforms.384

6.3 Community Sizes385

Discord communities in our dataset vary in size between 2 and 500,000 members. Figure 11386

depicts Discord community size with respect to project age (i.e., days since creation).387

Project Pairs
Sharing Community

Project Age (days)

Di
sc

or
d

C
om

m
un

ity
 S

ize

0 1,000 2,000 3,000 4,000 5,000

Figure 11 Discord community size with respect to project age (days from creation).

� This should be investigated more in-depth to see if it is a breakpoint at which particular
actions should be taken to keep the community growing.388

ECOOP 2023

42:16 On the Rise of Modern Software Documentation

. Extraction of Slack community sizes has proven more difficult due to the high variance
in invite page formats. Gitter does not even have an invite page to scrape, and, to the
best of our knowledge, the community size cannot be automatically retrieved.

389

6.4 Different Projects, Same Community390

Being in the same Discord community means sharing the same server (i.e., each project has391

a link in the README, possibly with different formats, but pointing to the same Discord392

server). We consider this a case of “different projects, same community”.393

Figure 11 shows horizontal pairs in the top part of the scatterplot, suggesting that different394

projects might share the same community: Our initial hypothesis that “same size of the395

community means same community” might not apply, especially for smaller communities.396

Nevertheless, it is unlikely for two different large communities to have the same number of397

members at the same time. We manually inspected the projects in those pairs and they398

are indeed different projects referring to the same wider community. For Discord we could399

reliably use the community name to confirm our hypothesis, as parsed from the invitation400

metadata (Section 2.4).401

Figure 12 shows how many projects share a community with respect to community size.402

Members

Pr
oj
ec

ts

Figure 12 Projects referencing the same community.

� Further analysis can show if projects are tightly coupled (e.g., different projects from
the same organization, new major versions of the same project) or if different projects
have an underlying reason to cater to the same audience.

403

6.5 Technical, Social, and Ethical Challenges404

Some community platforms are public, some allow anonymous access, some require a form405

of registration or access permission. We found communities with (automatic) procedures406

to accept new members but, in general, it is hard to devise a general automatic “agent” to407

explore all of them.408

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:17

The sheer amount of customization that is possible, even in a simple invite landing page409

of Slack, has been an obstacle to getting reliable data about communities lying behind those410

pages. Exploring a larger and more varied sample could shed light on platform dependent411

similarities and differences.412

� Machine readable APIs for communities can greatly benefit not only research in this
field, but also open new possibilities, e.g., the automatic migration of community-
generated content to preserve the history of projects when the underlying technologies
evolve.

413

Socio-ethical challenges: Communities usually are digital aggregations of people’s414

thoughts, ideas, rants, strengths, and weaknesses. Collecting such information can be seen as415

poking inside someone’s house. One can do it if having legitimate reasons to do so. One can416

be welcome if providing benefits for the community. But one can also be faced with concerns417

about privacy and legitimate use of collected information.418

Companies owning the platform sometimes are more keen to share their data than419

administrators of communities they host. While Slack has a monetization policy tied to its420

history retrievability, Discord allows unlimited access to a wealth of historical information421

via its API.422

A big role in the extensibility of our study is played by the attitude of administrators of423

interesting communities. While information might be public (i.e., anyone with a Discord424

account can automatically join a server and browse its entire content), to comply with425

Discord’s Terms of Service we need to ask for permission to add a bot to extract useful426

information for DwarvenMail. In this crucial step a fundamental role is played by personal427

beliefs and perceptions of the benefits of such a bot by the administrators and the community428

itself.429

. Accessibility of information is ever more beyond the fence of what is technically possible,
towards the barrier of what is ethically and socially accepted.430

7 Threats to Validity431

Our analyses are based on a dataset of public GitHub projects as the only source. This poses432

a threat to the generalizability of our results with respect to the type of projects hosted on433

GitHub. Open source projects developed in this social coding style might differ significantly434

from closed source projects developed by a small team of hired developers. There are also no435

guarantees that the results presented can be generalized to projects hosted on other similar436

repositories (e.g., SourceForge).437

The current study presents a limited generalizability with respect to the format of438

README files. Although our sampling procedure (Section 2.3) ensures generalizability with439

respect to the project’s main programming language, different README file formats could440

provide different link types and formats not fully captured by our analysis.441

Û We found evidence of more than 15 different README formats. While most share a
similar structure for external links, systematic analysis of these formats could improve
the generalizability of the results.

442

Limiting the extraction of the documentation landscape to what is reachable from the443

main README file (i.e., ignoring links to other READMEs in submodules of a project)444

poses a threat to construct validity. This threat is partially mitigated by the magnitude of445

the phenomenon we highlighted, emerging despite the limited scope, and calling for discussion446

and further investigation (i.e., also considering auxiliary documentation sources as a starting447

ECOOP 2023

42:18 On the Rise of Modern Software Documentation

point to map the landscape).448

Our analysis benefits from verifying the validity of links whenever possible (i.e., if the449

resource referred by the link is still available we expect an HTTP 200 OK response). When450

mining GitHub we verified the links we found in a two step process. The time interval451

between the first pass for scraping and the second pass for verification was short enough to452

guarantee that most links were in their intended state. Obsolete links may be possible and453

are part of the present study.454

. The analysis lacks accuracy when links are redirected or reused. Moreover, in the effort
to reconstruct link patterns for previous standard link formats of some platforms (e.g.,
Slack) we adopt a conservative approach where if the format follows reasonable patterns
it is accepted as a valid link in the history of a README file. We have no guarantee
nor a way to discover if the link was valid in the past.

455

The only possibility to study the evolution and validity of such links is to constantly456

monitor README files and their evolution over a period of time. Link validity can be457

checked as soon as the change in the README is triggered. This kind of study is outside of458

the scope of the presented work.459

� Semantic analysis of the pointed links could improve relatedness, reducing false positives
in link validity. Automatic link validity and relatedness to the source topic should be
investigated.

460

Links that are not visually represented in the rendered README are currently part of461

the analyses. This threat to the validity of our conclusions is partially mitigated by the low462

frequency of such occurrences. We found only 3 non-rendered links in 2 manually annotated463

projects (0.1% of links, 3.3% of projects).464

� We did not perform an analysis based on project types. Relationships between project
type, intended audience, and the resulting documentation landscape could provide
insights on how to leverage the landscape for projects of different natures and at
different maturity stages.

465

8 Related Work466

Communication channels, especially those tightly coupled with collaborative development467

platforms (e.g., GitHub), are fundamental for successful software development.468

Hoegl et al. [30] and Lindsjørn et al. [35] found communication to be an essential469

subcontract of teamwork quality. Tantisuwankul et al. analyzed the communication channels470

of GitHub projects [68]. Studying 70k library projects in 7 ecosystems, they identified471

13 communication channels as “a form of knowledge transfer or sharing” (e.g., licenses,472

change logs). They found that GitHub projects adopt multiple channels, which change473

over time, to capture new and update existing knowledge. Storey et al. [65] conducted474

a large-scale survey with 1,449 GitHub users to understand the communication channels475

developers find essential to their work. On average, developers indicated they use 11.7476

channels across all their activities (e.g., email, chat, microblogging, Q&A websites). They477

concluded that “communication channels shape and challenge the participatory culture in478

software development.” Hata et al. [28] studied early adopters of GitHub Discussions, finding479

that developers considered them useful and important. Lima et al. [33] used NLP to detect480

related discussions of OSS communities in GitHub Discussions.481

Treude and Storey [74] interviewed users of a community portal, finding that clients,482

developers, and end-users are involved in the process of externalizing developer knowledge.483

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:19

Nugroho et al. [41] studied how Eclipse developers utilize project forums, concluding that484

forums are essential platforms for linking various resources in the Eclipse ecosystem besides485

representing an important source of expert knowledge.486

Modern social media are becoming another information source for development activities.487

Mezouar et al. [39] studied how tweets can improve the bug fixing process. They observed how488

issues for Firefox and Chrome are usually reported earlier through Twitter than on tracking489

systems. This can potentially decrease the lifespan of a bug. Guzman et al. [27] analyzed490

the usage characteristics, content, and automatic classification of tweets about software491

applications. They found that tweets contain useful information for software companies but492

stressed the need for automatic filtering of irrelevant information.493

Instant messaging platforms, from Internet Relay Chat (IRC) to Discord, went from simple494

text messages to rich multimedia support with integrated DevOps workflows (i.e., Slack495

integrations). Yu et al. [78] learned how real-time (i.e., IRC) and asynchronous (i.e., mailing496

lists) communications were used and balanced across the GNOME GTK+ project. Shihab497

et al. [59] analyzed IRC meeting logs and found that developers actively contributed through498

meeting channels.499

Lin et al. [34] argued Slack played an increasingly significant role, sometimes replacing500

emails. They found various benefits of Slack over mailing lists. Developers use it for team-wide501

purposes (e.g., communicating with teammates, file and code sharing), community support502

(e.g., special interest groups), and personal benefits (e.g., networking, social activities).503

They also observed that developers commonly used bots to support their work. Chatterjee504

et al. [10] analyzed the conversations of developers from five Slack programming communities505

and developers’ StackOverflow posts. They found prevalent useful information, including506

API mentions and code snippets with descriptions in both sources.507

Alkadhi et al. [5] examined “rationale” elements (i.e., discussed issues, alternatives,508

pro-/con-arguments, decisions) in Atlassian HipChat messages of three software development509

teams. They found frequent, valuable discussions with elements of rationale. However, they510

also emphasized the need for automated tools due to the high volume of chat messages.511

Shi et al. [58] conducted an empirical study on developers’ Gitter chats. They manually512

analyzed 749 dialogs and performed an automated analysis of over 173K dialogs of OSS513

communities. Interestingly, developers tend to converse more on Wednesdays and Thursdays.514

They also found interaction patterns among conversations and noticed that developers tend515

to discuss topics such as API usage and errors. They argue the need for better utilization516

and mining of knowledge embedded in the massive chat history of OSS communities.517

Hata et al. analyzed links in source code comments [29] in a large-scale study (∼10518

million links) extracted from files of the main language of the project. We focus on README519

file links, which are independent of the project language.520

Ebert et al. [18] conducted an empirical study to understand which communication521

channels are used in GitHub projects and how they are presented to the audience, finding522

that the most common were chats, mail-related, social media, and GitHub channels. Käfer523

et al. [32] analyzed GitHub communication channels, finding that “Mailing lists are being524

replaced by modern enterprise chat systems in OSS development.” Our work broadens the525

scope beyond communication channels and adds details needed to identify the current status,526

understand how it has evolved, and obtain meaningful insights on why this is happening.527

Each of the previously discussed studies focuses on a specific part of the documentation528

landscape, recognizing the importance of the sources for knowledge management and doc-529

umentation. What is still missing is a higher level understanding of the phenomenon that530

shifts the relative importance of these sources over time, intra- and inter-project.531

ECOOP 2023

42:20 On the Rise of Modern Software Documentation

9 Conclusions and Future Work532

Classical software documentation is being replaced by “communication”. At least in open533

source software on GitHub, it is supported by a plethora of platforms characterized by534

high throughput, volatility, and heterogeneity. The original vision of on-demand developer535

documentation [55] advocated for a paradigm shift. A shift did happen, but it was not in the536

direction foreseen by Robillard et al. five years ago. The new communication platforms bring537

new challenges and opportunities for modern software documentation. It is time to shed538

light on new forms of documentation. A comparison with classical documentation and where539

it survives, unscathed by the new media and the needs of modern software development,540

might help rethink the role of documentation itself. Research efforts in this direction can541

help maintain documentation useful for software comprehension, maintenance, and evolution,542

independently of the form it will take.543

To achieve this we need a better understanding of the phenomenon occurring to software544

documentation sources. We regard the present work as scratching the surface of what545

has turned into an emerging heterogeneous, complex, and ever-changing documentation546

landscape, a terra incognita full of possibilities and threats.547

Acknowledgements: This work is supported by the Swiss National Science Foundation548

(SNSF) through the project “INSTINCT” (SNF Project No. 190113). Marco Raglianti would549

also like to thank the Swiss Group for Original and Outside-the-box Software Engineering550

(CHOOSE) for sponsoring the trip to the conference.551

References552

1 A Medium Corporation. Medium. URL: https://medium.com/.553

2 Tim Abbott. Why Slack’s free plan change is causing an exodus. URL: https://blog.zulip.554

com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/.555

3 Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele Bavota, Michele556

Lanza, and David C. Shepherd. Software documentation: The practitioners’ perspective. In557

Proceedings of ICSE 2020 (International Conference on Software Engineering), pages 590–601.558

ACM, 2020.559

4 Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez, Laura560

Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues unveiled. In561

Proceedings of ICSE 2019 (International Conference on Software Engineering), pages 1199–562

1210. IEEE/ACM, 2019.563

5 Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. Rationale in development564

chat messages: An exploratory study. In Proceedings of MSR 2017 (International Conference565

on Mining Software Repositories), pages 436–446. IEEE/ACM, 2017.566

6 Maurício Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Pinto, Margaret-567

Anne Storey, and Marco Aurélio Gerosa. How modern news aggregators help development568

communities shape and share knowledge. In Proceedings of ICSE 2018 (International Confer-569

ence on Software Engineering), pages 499–510. ACM, 2018.570

7 Anonymous-Authors. Replication package. URL: https://figshare.com/s/571

33c8af534dba61d72c41.572

8 Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of modern code573

review. In Proceedings of ICSE 2013 (International Conference on Software Engineering),574

pages 712–721. IEEE, 2013.575

9 Hudson Borges and Marco Tulio Valente. What’s in a GitHub star? Understanding repository576

starring practices in a social coding platform. Journal of Systems and Software, 146:112–129,577

2018.578

https://medium.com/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/
https://blog.zulip.com/2022/08/26/why-slacks-free-plan-change-is-causing-an-exodus/
https://figshare.com/s/33c8af534dba61d72c41
https://figshare.com/s/33c8af534dba61d72c41
https://figshare.com/s/33c8af534dba61d72c41

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:21

10 Preetha Chatterjee, Kostadin Damevski, Lori Pollock, Vinay Augustine, and Nicholas A Kraft.579

Exploratory study of Slack Q&A chats as a mining source for software engineering tools. In580

Proceedings of MSR 2019 (International Conference on Mining Software Repositories), pages581

490–501. IEEE/ACM, 2019.582

11 Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of software583

development problem factors on software maintainability. Journal of Systems and Software,584

82(6):981–992, 2009.585

12 Codecov. Codecov. URL: https://about.codecov.io/.586

13 David Curry. Slack revenue and usage statistics (2022). URL: https://www.businessofapps.587

com/data/slack-statistics/.588

14 Ozren Dabic, Emad Aghajani, and Gabriele Bavota. Sampling projects in GitHub for MSR stud-589

ies. In Proceedings of MSR 2021 (International Conference on Mining Software Repositories),590

pages 560–564. IEEE/ACM, 2021.591

15 Barthélémy Dagenais and Martin P Robillard. Creating and evolving developer documenta-592

tion: Understanding the decisions of open source contributors. In Proceedings of FSE 2010593

(International Symposium on Foundations of Software Engineering), pages 127–136. ACM,594

2010.595

16 Discord. Invites 101. URL: https://support.discord.com/hc/en-us/articles/596

208866998-Invites-101.597

17 Discord, Inc. Discord. URL: https://discord.com/.598

18 Verena Ebert, Daniel Graziotin, and Stefan Wagner. How are communication channels on599

GitHub presented to their intended audience? – A thematic analysis. In Proceedings of EASE600

2022 (International Conference on Evaluation and Assessment in Software Engineering), pages601

40–49. ACM, 2022.602

19 Osama Ehsan, Safwat Hassan, Mariam El Mezouar, and Ying Zou. An empirical study of603

developer discussions in the Gitter platform. Transactions on Software Engineering and604

Methodology, 30(1):1–39, 2020.605

20 Andrew Forward and Timothy C Lethbridge. The relevance of software documentation,606

tools and technologies: A survey. In Proceedings of DocEng 2002 (Symposium on Document607

Engineering), pages 26–33. ACM, 2002.608

21 freeCodeCamp. Our experience with Slack. URL: https://www.freecodecamp.org/news/609

so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81.610

22 Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud Moussavi,611

and Brian Smith. Usage and usefulness of technical software documentation: An industrial612

case study. Information and Software Technology, 57:664–682, 2015.613

23 GitHub. Fork a repo. URL: https://docs.github.com/en/get-started/quickstart/614

fork-a-repo.615

24 GitHub. PyGithub. URL: https://github.com/PyGithub/PyGithub.616

25 GitHub, Inc. GitHub. URL: https://github.com/.617

26 Google, LLC. YouTube. URL: https://www.youtube.com/.618

27 Emitza Guzman, Rana Alkadhi, and Norbert Seyff. A needle in a haystack: What do Twitter619

users say about software? In Proceedings of RE 2016 (International Requirements Engineering620

Conference), pages 96–105. IEEE, 2016.621

28 Hideaki Hata, Nicole Novielli, Sebastian Baltes, Raula Gaikovina Kula, and Christoph Treude.622

GitHub Discussions: An exploratory study of early adoption. Empirical Software Engineering,623

27(1):1–32, 2022.624

29 Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 9.6 million625

links in source code comments: Purpose, evolution, and decay. In Proceedings of ICSE 2019626

(International Conference on Software Engineering), pages 1211–1221. IEEE, 2019.627

30 Martin Hoegl and Hans Gemuenden. Teamwork quality and the success of innovative projects:628

A theoretical concept and empirical evidence. Organization Science, 12(4):435–449, 2001.629

ECOOP 2023

https://about.codecov.io/
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://www.businessofapps.com/data/slack-statistics/
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://support.discord.com/hc/en-us/articles/208866998-Invites-101
https://discord.com/
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://www.freecodecamp.org/news/so-yeah-we-tried-slack-and-we-deeply-regretted-it-391bcc714c81
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://github.com/PyGithub/PyGithub
https://github.com/
https://www.youtube.com/

42:22 On the Rise of Modern Software Documentation

31 Jialun Aaron Jiang, Charles Kiene, Skyler Middler, Jed R. Brubaker, and Casey Fiesler.630

Moderation challenges in voice-based online communities on Discord. Proceedings of HCI 2019631

(Human-Computer Interaction), 3(CSCW):1–23, 2019.632

32 Verena Käfer, Daniel Graziotin, Ivan Bogicevic, Stefan Wagner, and Jasmin Ramadani.633

Communication in Open-Source projects – End of the e-mail era? In Proceedings of ICSE634

2018 (International Conference on Software Engineering), pages 242–243. ACM, 2018.635

33 Marcia Lima, Igor Steinmacher, Denae Ford, Evangeline Liu, Grace Vorreuter, Tayana Conte,636

and Bruno Gadelha. Looking for related discussions on GitHub Discussions. In arXiv, 2022.637

34 Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and Alexander Serebrenik. Why developers638

are slacking off: Understanding how software teams use Slack. In Proceedings of CSCW/SCC639

2016, pages 333–336. ACM, 2016.640

35 Yngve Lindsjørn, Dag I.K. Sjøberg, Torgeir Dingsøyr, Gunnar R. Bergersen, and Tore Dybå.641

Teamwork quality and project success in software development: A survey of agile development642

teams. Journal of Systems and Software, 122:274–286, 2016.643

36 LinkedIn Corporation. LinkedIn. URL: https://www.linkedin.com.644

37 Brian Lovin. Join us on our new journey. URL: https://web.645

archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/646

join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5.647

38 Meta. Facebook. URL: https://www.facebook.com/.648

39 Mariam El Mezouar, Feng Zhang, and Ying Zou. Are tweets useful in the bug fixing process?649

An empirical study on Firefox and Chrome. Empirical Software Engineering, 23(3):1704–1742,650

2018.651

40 New Vector, Ltd. Gitter. URL: https://gitter.im/.652

41 Yusuf Sulistyo Nugroho, Syful Islam, Keitaro Nakasai, Ifraz Rehman, Hideaki Hata,653

Raula Gaikovina Kula, Meiyappan Nagappan, and Kenichi Matsumoto. How are project-654

specific forums utilized? A study of participation, content, and sentiment in the Eclipse655

ecosystem. Empirical Software Engineering, 26(6):132, 2021.656

42 N. Nurmuliani, D. Zowghi, and S. P. Williams. Using card sorting technique to classify657

requirements change. In Proceedings of IREC 2004 (International Requirements Engineering658

Conference), pages 240–248. IEEE, 2004.659

43 OpenAPI Tools. OpenAPI Generator. URL: https://github.com/OpenAPITools/660

openapi-generator.661

44 Dennis Pagano and Walid Maalej. How do developers blog? An exploratory study. In662

Proceedings of MSR 2011 (Working Conference on Mining Software Repositories), pages663

123–132. ACM, 2011.664

45 Papyrs. Easy company intranet & internal team wiki for Slack. URL: https://papyrs.com/665

slack-wiki-intranet/.666

46 Esteban Parra, Mohammad Alahmadi, Ashley Ellis, and Sonia Haiduc. A comparative study667

and analysis of developer communications on Slack and Gitter. Empirical Software Engineering,668

27(2):1–33, 2022.669

47 Esteban Parra, Ashley Ellis, and Sonia Haiduc. GitterCom: A dataset of Open Source670

developer communications in Gitter. In Proceedings of MSR 2020 (International Conference671

on Mining Software Repositories), pages 563–567. ACM, 2020.672

48 Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Michele Lanza.673

Mining StackOverflow to turn the IDE into a self-confident programming prompter. In674

Proceedings of MSR 2014 (Working Conference on Mining Software Repositories), pages675

102–111. IEEE/ACM, 2014.676

49 Python Software Foundation. Python Package Index. URL: https://pypi.org/.677

50 Marco Raglianti, Roberto Minelli, Csaba Nagy, and Michele Lanza. Visualizing Discord servers.678

In Proceedings of VISSOFT 2021 (Working Conference on Software Visualization), pages679

150–154. IEEE, 2021.680

https://www.linkedin.com
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://web.archive.org/web/20220927203327/https://spectrum.chat/spectrum/general/join-us-on-our-new-journey~e4ca0386-f15c-4ba8-8184-21cf5fa39cf5
https://www.facebook.com/
https://gitter.im/
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://github.com/OpenAPITools/openapi-generator
https://papyrs.com/slack-wiki-intranet/
https://papyrs.com/slack-wiki-intranet/
https://papyrs.com/slack-wiki-intranet/
https://pypi.org/

M. Raglianti, C. Nagy, R. Minelli, B. Lin, and M. Lanza 42:23

51 Marco Raglianti, Csaba Nagy, Roberto Minelli, and Michele Lanza. Using Discord conversations681

as program comprehension aid. In Proceedings of ICPC 2022 (International Conference on682

Program Comprehension), pages 597–601. ACM, 2022.683

52 Reddit. Reddit. URL: https://www.reddit.com/.684

53 Lionel P Robert and Alan R Dennis. Paradox of richness: A cognitive model of media choice.685

IEEE Transactions on Professional Communication, 48(1):10–21, 2005.686

54 Martin P Robillard and Robert DeLine. A field study of API learning obstacles. Empirical687

Software Engineering, 16(6):703–732, 2011.688

55 Martin P. Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar Chaparro,689

Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza, Mario Linares-Vásquez,690

Gail C. Murphy, Laura Moreno, David Shepherd, and Edmund Wong. On-demand developer691

documentation. In Proceedings of ICSME 2017 (International Conference on Software Main-692

tenance and Evolution), pages 479–483. IEEE, 2017.693

56 Hareem Sahar, Abram Hindle, and Cor-Paul Bezemer. How are issue reports discussed in694

Gitter chat rooms? Journal of Systems and Software, 172:110852, 2021.695

57 Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie Waterfield, Bernadette696

Bartlam, Heather Burroughs, and Clare Jinks. Saturation in qualitative research: Exploring697

its conceptualization and operationalization. Quality & Quantity, 52(4):1893–1907, 2018.698

58 Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing Wang. A first699

look at developers’ live chat on Gitter. In Proceedings of ESEC/FSE 2021 (European Software700

Engineering Conference and Symposium on the Foundations of Software Engineering), pages701

391–403. ACM, 2021.702

59 Emad Shihab, Zhen Ming Jiang, and Ahmed E Hassan. On the use of internet relay chat703

(IRC) meetings by developers of the GNOME GTK+ project. In Proceedings of MSR 2009704

(Working Conference on Mining Software Repositories), pages 107–110. IEEE, 2009.705

60 Slack Technologies. Slack. URL: https://slack.com/.706

61 Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.707

62 Sonatype. Maven Central Repository. URL: https://central.sonatype.dev/.708

63 Donna Spencer. Card Sorting: Designing Usable Categories. Rosenfeld Media, 2009.709

64 Stack Exchange, Inc. Stack Overflow. URL: https://stackoverflow.com/.710

65 Margaret-Anne Storey, Alexey Zagalsky, Fernando Figueira Filho, Leif Singer, and Daniel M.711

German. How social and communication channels shape and challenge a participatory culture712

in software development. IEEE Transactions on Software Engineering, 43(2):185–204, 2017.713

66 Viktoria Stray and Nils Brede Moe. Understanding coordination in global software engineering:714

A mixed-methods study on the use of meetings and Slack. Journal of Systems and Software,715

170:110717, 2020.716

67 Keerthana Muthu Subash, Lakshmi Prasanna Kumar, Sri Lakshmi Vadlamani, Preetha717

Chatterjee, and Olga Baysal. DISCO: A dataset of Discord chat conversations for software718

engineering research. In Proceedings of MSR 2022 (International Conference on Mining719

Software Repositories), pages 227–231. IEEE/ACM, 2022.720

68 Jirateep Tantisuwankul, Yusuf Sulistyo Nugroho, Raula Gaikovina Kula, Hideaki Hata, Arnon721

Rungsawang, Pattara Leelaprute, and Kenichi Matsumoto. A topological analysis of commu-722

nication channels for knowledge sharing in contemporary GitHub projects. Journal of Systems723

and Software, 158:110416, 2019.724

69 Telegram. Telegram. URL: https://telegram.org/.725

70 The Matrix.org Foundation C.I.C. Matrix. URL: https://matrix.org/.726

71 Mike Thelwall and Liwen Vaughan. A fair history of the web? Examining country balance in727

the Internet Archive. Library & Information Science Research, 26(2):162–176, 2004.728

72 Yuan Tian, Palakorn Achananuparp, Ibrahim Nelman Lubis, David Lo, and Ee-Peng Lim.729

What does software engineering community microblog about? In Proceedings of MSR 2012730

(Working Conference on Mining Software Repositories), pages 247–250. IEEE, 2012.731

73 Travis CI. Travis CI. URL: https://www.travis-ci.com/.732

ECOOP 2023

https://www.reddit.com/
https://slack.com/
https://central.sonatype.dev/
https://stackoverflow.com/
https://telegram.org/
https://matrix.org/
https://www.travis-ci.com/

42:24 On the Rise of Modern Software Documentation

74 Christoph Treude and Margaret-Anne Storey. Effective communication of software development733

knowledge through community portals. In Proceedings of ESEC/FSE 2011 (European Software734

Engineering Conference and Symposium on the Foundations of Software Engineering), pages735

91–101. ACM, 2011.736

75 Twitter, Inc. Twitter. URL: https://twitter.com/.737

76 Jed R Wood and Larry E Wood. Card sorting: Current practices and beyond. Journal of738

Usability Studies, 4(1):1–6, 2008.739

77 Zhou Yang, Chenyu Wang, Jieke Shi, Thong Hoang, Pavneet Kochhar, Qinghua Lu, Zhenchang740

Xing, and David Lo. What do users ask in open-source AI repositories? An empirical study of741

GitHub issues. arXiv preprint arXiv:2303.09795, 2023.742

78 Liguo Yu, Srini Ramaswamy, Alok Mishra, and Deepti Mishra. Communications in global743

software development: An empirical study using GTK+ OSS repository. In Proceedings of744

OTM 2011 (On the Move to Meaningful Internet Systems), pages 218–227. Springer, 2011.745

79 Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz, and Guenther746

Ruhe. Cost, benefits and quality of software development documentation: A systematic747

mapping. Journal of Systems and Software, 99:175–198, 2015.748

80 Carlos Zimmerle, Kiev Gama, Fernando Castor, and José Murilo Mota Filho. Mining the749

usage of reactive programming APIs: A study on GitHub and Stack Overflow. In Proceedings750

of MSR 2022 (International Conference on Mining Software Repositories), pages 203–214.751

ACM, 2022.752

81 Zyte. Scrapy. URL: https://scrapy.org.753

https://twitter.com/
https://scrapy.org

	1 Introduction
	2 Dataset Creation and DwarvenMail
	2.1 Project Mining
	2.2 Tool Support: DwarvenMail
	2.3 Manual Annotation
	2.4 Parsing Links: Strategy & Heuristics
	2.5 Parsing README Histories
	2.6 Community Size
	2.7 Data Availability and Replication Package

	3 Documentation Landscape
	4 Modern Communication Platforms
	5 Coexistence and Competition
	6 Instant Messaging: A Deep Dive
	6.1 Gitter, Discord, and Slack: A Timeline
	6.2 Throughput and Volatility
	6.3 Community Sizes
	6.4 Different Projects, Same Community
	6.5 Technical, Social, and Ethical Challenges

	7 Threats to Validity
	8 Related Work
	9 Conclusions and Future Work

