
Information and Software Technology 153 (2023) 107064

A
0

C
D
J
a

b

c

A

K
C
C
S
S
R
V
W
3

1

i
i
p
a
m
(
t
i
o
M
r
v

t
a
t
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

odeCity: A comparison of on-screen and virtual reality
avid Moreno-Lumbreras a,∗, Roberto Minelli b, Andrea Villaverde c,
esus M. Gonzalez-Barahona c, Michele Lanza b

Escuela Internacional de Doctorado @ Universidad Rey Juan Carlos & Bitergia, Móstoles & Leganés, Spain
REVEAL @ Software Institute, USI, Lugano, Switzerland
ETSIT @ Universidad Rey Juan Carlos, Fuenlabrada, Spain

R T I C L E I N F O

eywords:
odeCity
ity metaphor
oftware visualization
oftware evolution
everse engineering
irtual reality
eb

D

A B S T R A C T

Context: Over the past decades, researchers proposed numerous approaches to visualize source code. A popular
one is CodeCity , an interactive 3D software visualization representing software system as cities: buildings
represent classes (or files) and districts represent packages (or folders). Building dimensions represent values
of software metrics, such as number of methods or lines of code. There are many implementations of CodeCity ,
the vast majority of them running on-screen. Recently, some implementations using virtual reality (VR) have
appeared, but the usefulness of CodeCity in VR is still to be proven.
Aim: Our comparative study aims to answer the question ‘‘Is VR well suited for CodeCity, compared to the
traditional on-screen implementation?’’
Methods: We performed two experiments with our web-based implementation of CodeCity , which can be
used on-screen or in immersive VR. First, we conducted a controlled experiment involving 24 participants
from academia and industry. Taking advantage of the obtained feedback, we improved our approach and
conducted a second controlled experiment with 26 new participants.
Results: Our results show that people using the VR version performed the assigned tasks in much less time,
while maintaining a comparable level of correctness.
Conclusion: VR is at least equally well-suited as on-screen for visualizing CodeCity , and likely better.
. Introduction

Representing source code metrics as features of buildings in a city
s a well known metaphor for visualizing software in 3D, introduced
n 1999 by Knight and Munro in their Software World [1]. It became
opular with CodeCity [2], which also inspired some other similar
pproaches (e.g., [3–5]). CodeCity shows software systems as cities by
apping metrics of artifacts (i.e., classes, files) to features of buildings

i.e., height, size, color), and placing buildings in locations related to
he position of artifacts in the system hierarchy. Those cities can be
ntuitively explored [6], offering a clear notion of locality, supporting
rientation, and making explicit the underlying structural complexity.
ost CodeCity implementations work on traditional 2D screens, but

ecently some are also exploring how well the metaphor works in
irtual reality (VR).

VR technology has been under development for decades. During
he last few years, new devices have appeared that are both low-cost
nd standalone (i.e., they do not require to be tethered to a computer
hat provides the rendering capabilities of its GPU), making VR more
ffordable and accessible. Browsers have implemented some new APIs,

∗ Corresponding author.
E-mail address: d.morenolu@alumnos.urjc.es (D. Moreno-Lumbreras).

such as WebXR [7] and WebGL [8], which enables them to support 3D
scenes and user interaction in VR. Applications developed using these
APIs run in the browser, thus are inherently multi-platform, and are
easy to integrate with other web front-end modules and APIs.

Because of this, browsers have become appropriate for comparing
on-screen with VR immersion: they are available both in traditional
screen devices and in VR devices, and it is not difficult to build
applications for them.

In the study presented in this paper, we take advantage of this situ-
ation by using a browser-based implementation of CodeCity to compare
how users interact with it on screen and in immersive VR. Our aim is to
explore if the affordances of VR, which build on the spatial capabilities
of the human brain but add some extra complexity (e.g., being used to
unfamiliar devices, navigating the immersive environment), may help
when working with CodeCity for performing software comprehension
tasks. Since the underlying implementation used for on-screen and VR
is the same, differences in the behavior of subjects are expected to be
due exclusively to differences between interactions in a screen-based
environment and in VR immersion.
vailable online 9 September 2022
950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

ttps://doi.org/10.1016/j.infsof.2022.107064
eceived 17 December 2021; Received in revised form 23 August 2022; Accepted 2
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

September 2022

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:d.morenolu@alumnos.urjc.es
https://doi.org/10.1016/j.infsof.2022.107064
https://doi.org/10.1016/j.infsof.2022.107064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.107064&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
We decided to focus on two measurable properties that have a clear
impact on how helpful CodeCity may be in supporting software compre-
hension tasks: accuracy and time spent. We designed our experiments as
a set of software comprehension tasks and compared how accurate were
the results reported by participants, and how much time they spent
until they could report a result.

Our study aims to answer two research questions:

• RQ𝟏: How does the accuracy of participants immersed in VR
compare to that of participants using the on-screen version of
BabiaXR-CodeCity?

• RQ𝟐: How does the efficiency of participants immersed in VR
compare to that of participants using the on-screen version of
BabiaXR-CodeCity?

In the first experiment 24 subjects performed a set of program com-
prehension tasks, by interacting with the same CodeCity visualization
of a given project. Half of the subjects performed the experiment on-
screen and the other half used a VR device. Participants were both from
industry and academia, and we tried to make all other conditions as
similar as possible to avoid confounding variables.

After analyzing the results of this experiment, including the feed-
back received from participants, we decided to run a second experiment
to overcome some of the limitations that could threaten the validity
of the results. We expected to confirm or refute those results and
obtain more solid evidence. The main factors that we fine-tuned in the
second experiment were fixing differences in training, and in measuring
some parameters of the experiment, and adapting the VR scene so
that subjects could interact more comfortably with it. This experiment
involved 26 new participants.

We implemented the CodeCity visualization that is used in the ex-
periments as a part of BabiaXR,1 a 3D visualization library designed for
being used both in traditional browsers, simulating 3D on 2D screens,
and on browsers in VR devices, in this case as VR immersive scenes.
The data to be visualized (i.e., the metrics displayed by CodeCity) was
retrieved, analyzed, and preprocessed using GrimoireLab [9], which
allows for complete decoupling of data retrieval, data analysis, and data
visualization.

The main contributions presented in this paper2 are:

1. A methodology for comparing the behavior of subjects while
interacting with software comprehension applications using tra-
ditional screens or VR devices.

2. The results of two controlled experiments, showing that the
VR approach is viable for performing software comprehension
tasks facilitated by CodeCity , and has benefits when compared
to on-screen applications.

3. An open source implementation of CodeCity which runs on
any modern browser, making CodeCity VR visualizations more
accessible and our experiments more easily reproducible.

2. BabiaXR-CodeCity

BabiaXR-CodeCity is part of BabiaXR,3 an open source toolset for 3D
data visualization in the browser available from the npm repository.4
BabiaXR is based on A-Frame,5 a framework for building 3D, augmented
reality (AR), and VR experiences in the browser. A-Frame extends HTML
with new entities, allowing the description of 3D scenes as a part of a
HTML document, which the browser uses to build a part of its internal

1 https://babiaxr.gitlab.io.
2 This paper is an extension of our previous work published at VISSOFT

2021 [10].
3 BabiaXR: https://babiaxr.gitlab.io.
4 https://npmjs.org/package/aframe-babia-components.
5 A-Frame: https://aframe.io.
2

Fig. 1. Example of a BabiaXR scene.

Fig. 2. Example of a BabiaXR-CodeCity scene.

DOM. Therefore, the scene can be manipulated by manipulating the
DOM, using techniques common to any front-end web developer.

A-Frame is built on top of Three.js,6 which in turn uses the WebGL
API provided by all modern browsers.

BabiaXR extends A-Frame by providing components to create visu-
alizations, to retrieve data, and to manage it (e.g., filter). Scenes built
with BabiaXR can be displayed on-screen or on VR devices, thanks to
the facilities provided by browsers. Fig. 1 shows a sample scene.

2.1. CodeCity in BabiaXR

As the original CodeCity , our implementation maps metrics to fea-
tures of buildings, and groups buildings according to the hierarchical
structure of the source code. However, there are some differences.
The original implementation was a desktop-based Smalltalk application,
while ours is built as a JavaScript application running in the browser.
The layout of the original CodeCity was based on hierarchically splitting
a rectangle using a treemap algorithm, but we use a spiraling algorithm:
within each hierarchical level, the first building is placed in the center
of a spiral, and the remaining buildings are positioned spiraling around
it. We use the same algorithm also to layout groups of buildings at the
same hierarchical level. Fig. 2 shows an example of the layout produced
by our implementation of CodeCity .

The spiral grows clock-wise, starting in the green quarter in the
center-left of the Figure, following with the next green quarter right of
it, then with the next one below it, then with some buildings towards
the left, and so on.

The spiral algorithm behaves better when representing the evolution
of a project when new elements (i.e., buildings) pop up and disappear in
any place in the hierarchy. With rectangle packing, since the allocated
space for the whole city is limited to the original outer rectangle, new
buildings force all existing buildings to move to make space for them,

6 Three.js: https://threejs.org.

https://babiaxr.gitlab.io
https://babiaxr.gitlab.io
https://npmjs.org/package/aframe-babia-components
https://aframe.io
https://threejs.org

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.

B
i

3

w
t
m
m
p

not keeping a perceivable relationship with the place they occupied
before being moved.

BabiaXR-CodeCity maps the values of software metrics to features
of the buildings: each building corresponds to a file and each district
to a directory which can have files and subdirectories inside. BabiaXR-
CodeCity permits to map any metric that is available to either the area
of the base, the height, or the color of each building.

BabiaXR-CodeCity scenes are interactive. Users can wander through
the city: on-screen with cursor keys and in VR by walking in the
physical world. Users can also visualize data about the buildings of
their interest. In the on-screen mode, the user can hover the cursor
on a building to open a tooltip containing the name of the file to-
gether with metric values (e.g., number of functions, lines of code,
cyclomatic complexity [11]). In VR the same behavior is enabled by the
raycaster offered by the VR controller (i.e., the Oculus Quest 2 pointing
mechanism).

2.2. From source code to a 3D scene

Each visualization in BabiaXR-CodeCity refers to the source code of a
given commit in a Git repository. We use a Python script
(cocom_graal2es.py7) to clone the repository, check out a given commit,
compute the values of metrics for each file, and store them in an
ElasticSearch8 database. The script uses Graal [12] and Perceval [13]
to retrieve and compute the values of the metrics. Graal, in turn, uses
other tools to compute metrics, via its CoCom backend.9 The get_list.py10

script queries ElasticSearch to produce a JSON document in the format
required by BabiaXR-CodeCity . This document has the structure shown
in Listing 1.

Listing 1: Structure of a JSON document with data for BabiaXR-
CodeCity

1 [
2 {
3 " file_path " : " aaa/bbb/ccc "
4 " metric " : x1,
5 " metric2 " : y1,
6 ...
7 },
8 {
9 " file_path " : " aaa/ddd "

10 " metric " : x2,
11 " metric2 " : y2,
12 ...
13 },
14 ...
15]

To visualize this data, we use an HTML document, with the declara-
tion of the JSON document to be employed. The HTML file imports all
dependencies (A-Frame and BabiaXR JavaScript packages) and defines
the scene by declaring the corresponding HTML elements with their
attributes (components, in A-Frame parlance). Components have their
own behavior, programmed in JavaScript, which affects the element
for which they are attributes or other components of the same ele-
ment. Listing 2 summarizes how to define a scene and its relevant

7 cocom_graal2es.py documentation: https://gitlab.com/babiaxr/aframe-
babia-components/-/tree/master/tools/generate_repository_data.

8 ElasticSearch: https://www.elastic.co/.
9 Graal-CoCom backend: https://github.com/chaoss/grimoirelab-

graal#backends.
10 https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/

tools/generate_from_es.
3

a

Fig. 3. BabiaXR workflow: From source code to a scene.

components: babia-queryjson, which retrieves the JSON docu-
ment and offers it to other components, babia-treebuilder which
consumes it and generates the tree-like data structure needed by Babi-
aXR-CodeCity , and babia-boats is the actual component to generate
the visualization, and consumes this data structure. Each component
has its own configuration, detailed in the documentation.11

Listing 2: HTML used for defining a scene
1 <a-scene id= " scene " >
2 <a-entity id= " rawdata "

babia-queryjson= " url: data.json " ><
/a-entity>

3 <a-entity id= " treedata "
babia-treebuilder= " field:
field_list; split_by: /; from:
rawdata " ></a-entity>

4 <a-entity id= " city " babia-boats= " from:
treedata; area: metric1; height:

metric2; color: metric3 " >
5 </a-entity>
6 ...
7 </a-scene>

Fig. 3 summarizes the complete workflow to produce a scene with
abiaXR-CodeCity starting from a source code snapshot in a Git repos-

tory.

. Experiments

To compare how users interact with CodeCity in VR and on-screen,
e conducted two controlled experiments. We reviewed and followed

he ACM SIGSOFT Empirical Standards [14] for designing the experi-
ents, specifically those related to quantitative methods for experi-
ents with humans, satisfying most of the essential attributes and a
art of the desirable ones.

11 Documentation for BabiaXR components: https://gitlab.com/babiaxr/
frame-babia-components/-/tree/master/docs/APIs.

https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_repository_data
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_repository_data
https://www.elastic.co/
https://github.com/chaoss/grimoirelab-graal#backends
https://github.com/chaoss/grimoirelab-graal#backends
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_from_es
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/tools/generate_from_es
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/docs/APIs
https://gitlab.com/babiaxr/aframe-babia-components/-/tree/master/docs/APIs

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Fig. 4. A participant during the VR experiment.

Our experiments are inspired by the original experiment performed
by the authors of CodeCity [15]. Our aim is to understand how accurate
(i.e., correctness) and efficient (i.e., time spent) are subjects immersed
in VR, compared to subjects working on-screen, when performing the
same software comprehension tasks. Since the underlying implemen-
tation of CodeCity is the same, the metrics used and its mapping to
building features are also the same. The way of interacting with the
scene is very similar, thus we expect differences to be due to the dif-
ferences between using screens simulating 3D on 2D, or VR providing
the illusion of real 3D. In both experiments, we divided participants
into two groups: one group solved the tasks on-screen (Screen-BabiaXR)
while the other group solved them in VR (VR-BabiaXR). All subjects
were recruited and did not have any relation with the authors and did
not have knowledge of the software systems being visualized during the
experiment.

VR participants performed the experiment using the browser in a
VR device in immersed VR mode, while on-screen participants per-
formed the experiment using the browser on a desktop computer with
a traditional screen. In all cases, tasks were defined by a question
related to the comprehension of the software visualized with CodeCity .
Participants interacted with the visualization and completed the task
by providing an answer to the question, which was later evaluated for
correctness and time to complete.

In all cases, the supervisor could see the scene ‘‘with the eyes of the
participant’’, and provide support if needed. For on-screen participants,
the supervisor could see the screen, and for VR participants the headset
was configured to cast the scene to a TV screen.

Fig. 4 shows a participant during the VR experiment and the screen-
cast for the supervisor.

We ran two experiments because when analyzing the results of the
first one, and the qualitative feedback provided by participants, we
found some aspects of the experiment that could be improved, in order
to avoid some potential confounding variables and to get more compa-
rable results. In both experiments, the aim was the same, and the design
was very similar. However, some of the details that changed could have
their importance, as we will discuss later in Section 4. The participants
in both experiments were different, although the demographics of both
groups of participants are similar. We conducted the second experiment
about six months after the first experiment.

In addition, in the second experiment, various tasks that did not
offer significant results were removed while some were added for a
more extended analysis. All the details of the changes between the first
experiment and the second, both in the experiment scene and in the
definition of tasks and methodology are detailed in Section 3.2

Visualized system. In our experiments, participants interact with
a CodeCity visualization of the source code of JetUML.12 For the first

12 JetUML: https://github.com/prmr/JetMUL.
4

Fig. 5. First experiment: CodeCity visualizations of JetUML. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

experiment, we use two source code snapshots: the first commit on
June 28, 2018 (see Fig. 5(b)), and the first commit of March 25, 2021
(see Fig. 5(a)). However, in the second experiment, we kept only one
snapshot of the project, the first commit of March 25, 2021, because we
observed during the first experiment that this added some unnecessary
confusion to subjects.

Mapping of metrics. In both of our experiments we use a mapping
of metrics to features of the buildings which are similar to those in the
original CodeCity implementation. Each building represents a file. The
area of its base corresponds to the number of functions (num_funs),
its height to the lines of code per function (loc_per_function),
and its color the Cyclomatic Complexity Number (CCN), in a blue to
red scale. Therefore, the volume of the building represents the number
of lines of code (LOC) of the file.

3.1. First experiment

Participants in the experiment were presented with a BabiaXR-
CodeCity visualization of two different commits of JetUML, and were
asked to complete a number of software comprehension tasks using the
visualization.

Demographics. The experiment was completed by 24 participants
from both academia and industry. Fig. 6 summarizes their experience
level and years of experience. None of the participants had ever used a
CodeCity-like visualization before, even if some of them had heard of it.
Only one participant was ‘‘a little’’ familiar with JetUML, meaning she
had heard of the system, but never used it. More details are available
in the replication package (see Section 8).

Environment. The data used, and the implementation of the visu-
alizations, were exactly the same for all participants. All participants
were presented with two visualizations corresponding to the first com-
mit of June 28, 2018 (see Fig. 5(b)) and if March 25, 2021 (see

https://github.com/prmr/JetMUL

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Fig. 6. Experience of participants (first experiment). Areas are: object-oriented
(Exp OOP), procedural (Exp PRP), or functional (Exp FNP) programming, reverse
engineering (Exp REV), and use of IDE (Exp IDE).

Fig. 5(a)). Half of the participants (12) interacted with them immersed
in VR (VR participants) while the other half (12) interacted with them
on a desktop with a traditional 2D screen (on-screen participants). The
detailed setup for each half is as follows:

VR participants performed the experiment using the Oculus browser
in an Oculus Quest 2 headset, in immersed VR mode. Before the exper-
iment, participants were offered the ‘‘First Steps’’ tutorial that comes
standard with Oculus Quest devices, to make them familiar with the
headset. During the experiments, participants are required to talk aloud
when starting each task, and when answering the question posed for
determining that a task is completed. The experiments were followed
by a supervisor who took note of the answers of the participants.

On-screen participants performed the experiment using the Chrome
browser on a desktop computer with a traditional screen. During the
experiments, they recorded their answers via Google Forms. The ex-
periments were followed by a supervisor. The form was easy and quick
to fill in so that there was little or no additional delay in answering
(compared with the talk aloud mechanism used by VR participants.

Tasks. In this first experiment participants were asked to repeat
4 tasks on visualizations for the two commits mentioned earlier: 𝐄𝟏
𝐓𝟏–𝐄𝟏 𝐓𝟒 for March 25, 2021 and 𝐄𝟏 𝐓𝟓–𝐄𝟏 𝐓𝟖 for June 28, 2018. A
ninth task (𝐄𝟏 𝐓𝟏𝟏, given this number to facilitate consistency with the
second experiment) was also proposed to participants, to get some more
qualitative information. Table 1 summarizes all tasks that participants
had to address. To classify our tasks, we used the maintenance task
definition framework by Sillito et al. [16] (the category of each task
according to this framework is the last column in the table). Tasks
identifiers have the 𝐄𝟏 prefix to make it clear they are of the first
experiment.

Answers. To provide answers to questions in each task, on-screen
participants had to fill in a Google Form after each task was completed,
while VR participants had to speak aloud when they have the final
answer for the task. For each task, participants were also asked to assess
5

the level of difficulty, from ‘‘strongly disagree’’ to ‘‘strongly agree’’ with
the task being difficult.

Tracking results. For each 𝐄𝟏 𝐓𝟏–𝐄𝟏 𝐓𝟖 task, two parameters are
tracked as results: how long did it take for the subject to produce the
result, as a proxy of efficiency; and the actual answer, as a proxy for
correctness:

• Efficiency. The supervisor tracked the time that each participant
spent on each task. As a backup, the supervisor also recorded a
screencast (on-screen) or an actual video recording of the whole
experiment (VR).

• Correctness. For tasks 𝐄𝟏 𝐓𝟏 and 𝐄𝟏 𝐓𝟓 participants should iden-
tify the geographical location where the test code is located (e.g.,
the west zone of the city). For tasks 𝐄𝟏 𝐓𝟐, 𝐄𝟏 𝐓𝟑, 𝐄𝟏 𝐓𝟒, 𝐄𝟏 𝐓𝟔, 𝐄𝟏
𝐓𝟕, and 𝐄𝟏 𝐓𝟖 participants had to find the Top 3 files with respect
to a metric, ordered from highest to lowest in value of that metric.
The first author created an oracle with the correct answers to each
of the tasks, and an oracle with the Top 5 correct answers of each
task, for close match analysis, these oracles were validated by
the second author. With this answer we extract six measurements
for the correctness analysis, three of these correspond to whether
the three chosen files correspond to those of the oracle exactly
in the same order, that is if the first chosen by the participant
corresponds to the first of the oracle, the second chosen by the
participant corresponds with the second file of the oracle and the
third chosen by the participant corresponds with the third file of
the oracle. The other three correspond to whether each of the
three files chosen by the participants is found in the oracle of the
Top 5 files, regardless of the order of choice, that is, if the first,
second, and third chosen files are found in the oracle of 5 files.

In the final task, we asked a few high-level questions (e.g., perceived
difficulty, and general feedback to improve the visualization). We also
asked an open-ended question, the task 𝐄𝟏 𝐓𝟏𝟏: ‘‘Can you locate the core
part of the system, i.e., the most important files or packages? Please explain
briefly why you think that this is the core’’. This task gave us qualitative
feedback on how our visualization supports users in locating key parts
of a system.

3.2. Experimental setup: Analysis and changes

After completing the first experiment, we analyzed the results and
the qualitative feedback we obtained from participants. We identified
a number of issues that could have an impact on the accuracy of the
results.

Measuring task completion time. A potential source of inaccuracy
when measuring task completion time was that on-screen participants
used a form to fill in the results, while VR participants talked aloud
with the supervisor taking notes of the answers. For on-screen partici-
pants, the complete description of tasks was in the form, while for VR
participants, it was in banners in the scene. Our assumption was that
both setups would take approximately the same time, not impacting the
completion time, but it could be otherwise.

Training. We had the assumption that on-screen participants did
not need a specific training to use the visualization because all of them
were used to on-screen interfaces. Their feedback confirmed our hy-
pothesis since nobody reported special issues with the interface except
with one minor detail: the use of the arrow/WASD keys for moving
in the scene. Several participants were not familiar with that way of
navigating the scene, and had some trouble until they adapted, which
could cause delays in the completion of tasks, not because of the tasks
themselves, but because of the time it took for them to move through
the scene to visualize it the way they wanted. This effect could bias the
measures of completion time for tasks in the on-screen scenario.

Presentation of the city. Some participants reported problems with
how the city was presented. A VR participant reported that ‘‘is hard

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.

o
o
h
s

r
u
w
r
f
m

c
h
e
p
t
p
i

i
c

p
c
c
i

3

t

m
t
e
f
t
a
a
t

t

Table 1
Tasks performed in the first experiment.

Task ID Task description & Purpose Category

𝐄𝟏 𝐓𝟏/𝐄𝟏 𝐓𝟓 Description. Explore the city to locate all the test code (i.e., files and directories) of the system. Structural
Purpose. typically, test classes are defined in separated packages in Java projects. The participants need to understand
how the test classes are organized.

Understanding

𝐄𝟏 𝐓𝟐/𝐄𝟏 𝐓𝟔 Description. Find the three source code files (not testing files) with the highest number of functions (i.e., num_funs)
in the system.

Metric analysis

Purpose. Classes in an Object-Oriented system typically have a single responsibility. In this task, participants have to
locate classes with the highest number of functions (or methods), which are often good candidates for refactoring (e.g.,
split class).

𝐄𝟏 𝐓𝟑/𝐄𝟏 𝐓𝟕 Description. Find the three source code files (not testing files) with the highest lines of code per function
(i.e., loc_per_function) in the system.

Metric analysis

Purpose. Lines of code per function is a good indicator to identify classes with very large methods, hence good
candidates for refactoring, maintenance activities, or quality assurance.

𝐄𝟏 𝐓𝟒/𝐄𝟏 𝐓𝟖 Description. Find the three source code files (not testing files) with the highest Cyclomatic Complexity Number
(i.e., CCN).

Metric analysis

Purpose. The Cyclomatic Complexity Number measures the number of linearly independent paths through a piece of
code. Most of the time, complex pieces of source code are good candidates for refactoring.

𝐄𝟏 𝐓𝟏𝟏 Description. Now that you are more familiar with JetUML, can you locate the core part of the system, i.e., the most
important files or packages? Please explain briefly why do you think that this is the core.

Tool insight

Purpose. This task was not considered an integral part of the experiment, but it gave us feedback on the degree to
which our visualization supports users in locating the key parts of a software system.
p
s
a
p
t

t
v
h
o
n
p
b
o

o
w

t
f

r
t
i
t

3

C
t
v
e

a
o
v
t
o
R

s

to compare different heights and because of the fact that some buildings
hide each others’’., another one that ‘‘often times it’s hard to see some
f the entities because they are hidden or have similar metrics’’. Some
n-screen participants had similar comments: ‘‘it is difficult to find the
ighest buildings sometimes’’, or ‘‘the very even blocks seen from certain
ources seem the same or can even lead to mistakes’’.

Repeating tasks on a different commit. Our expectation was that
epeating tasks on a different commit of the same project would allow
s to measure how people behaved when they had some familiarity
ith the setup. However, the results and feedback showed that the

esults of that second set of tasks were not really different from the
irst one, but added some complexity and overall, made the experiment
uch longer for participants.

Collected demographics. We found that the demographics we
ollected for participants had room for improvement. On the one
and, they were in some aspects too specific, asking them about their
xperience in narrow domains, such as object-oriented, functional, or
rocedural programming, which did not add meaningful information
o our analysis. On the other hand, we missed some important as-
ects such as previous experience with VR devices, which could be
nteresting to analyze.

Completion time of the last task. Due to an error in our exper-
ment design, in the first experiment we did not track the time to
omplete for the last task (𝐄𝟏 𝐓𝟏𝟏).

Starting a task while still reading a task. We realized that VR
articipants read the description of the tasks while looking toward the
ity. Although they were told not to do so, that would mean that they
ould, even unconsciously, start to address the task while still reading
ts description, not being fair to how we measured time to completion.

.2.1. Changes
After this analysis, we decided to introduce a number of changes for

he second experiment:
To mitigate problems in measuring task completion times we were

ore precise with the mechanisms for informing participants about the
asks to complete and to measure when they start and finish. All texts
xplaining tasks, instructions, and information were in the scene itself,
or both VR and on-screen participants. All participants were requested
o voice they start with a task when they start reading its description. In
ddition, all participants were required to provide answers by speaking
loud, in addition to notifying the supervisor aloud when they finished
he tasks, removing the questionnaire form for on-screen participants.

To ensure a base level of familiarity with the system, we added some
6

raining for on-screen participants. Before starting the experiment, all w
articipants were shown a training scene. This scene consisted of a
ample scene with a city to let participants get used to the environment
nd the interaction. With this change, we try to ensure that on-screen
articipants not familiar with using arrow/WASD keys for moving have
he opportunity to become familiar with that.

To facilitate interaction with the city, we changed some presen-
ation parameters. In particular, we changed the scale (making the
isualization smaller), the relative height of buildings and neighbor-
oods (making differences in height more apparent), and the placement
f the city in the scene, placing it closer to the camera. We changed
othing in the location algorithm. With this measure, we sought to im-
rove the effectiveness and efficiency of responses, and also minimize
ias due to different buildings being hidden by others (the new angle
f view allows for a clean sight of all buildings).

To make the experiment shorter, we removed the second set of tasks
n a different commit (e.g., 𝐄𝟏 𝐓𝟓). Instead, we added two new tasks
hich explored different aspects of software comprehension.

To improve the demographic data collected, we merged all ques-
ions about programming experience in one and added a new question
or VR participants, about their previous experience with virtual reality.

We also measured the completion time for the last task (e.g., 𝐄𝟐 𝐓𝟏𝟏).
To avoid the problem of participants starting with a task while still

eading about it, in the second experiment we placed the descriptions of
he tasks on one side and the city on the other side, with the participant
n the middle. Therefore, when they are done reading the task, they can
urn, have the city in sight, and start with the task.

.3. Second experiment

Participants in the experiment were presented with a BabiaXR-
odeCity visualization of a single commit of JetUML, and were asked
o complete a number of software comprehension tasks using the
isualization. None of the participants had participated in the first
xperiment.

Demographics. This experiment involved 26 participants from both
cademia and industry. Fig. 7 summarizes experience level and years
f experience. None of the participants had ever used a CodeCity-like
isualization before, even if some of them had heard of it. Only one of
he participants had heard about JetUML, the others had no knowledge
f the system. More details about the demographics are available in the
eplication Package (Section 8).

Environment. The data used, and the implementation of the vi-
ualizations was exactly the same for all participants. All participants

ere presented with a single visualization of the JetUML source code,

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Table 2
Tasks performed in the second experiment. New tasks (𝐄𝟐 𝐓𝟗 and 𝐄𝟐 𝐓𝟏𝟎) are highlighted in red.

Task Task description & Purpose Category

𝐄𝟐 𝐓𝟏 Description. Explore the city to locate all the test code (i.e., files and directories) of the system. Structural
Purpose. typically, test classes are defined in separated packages in Java projects. The participants need to understand how the
test classes are organized.

Understanding

𝐄𝟐 𝐓𝟐 Description. Find the three source code files (not testing files) with the highest number of functions (i.e., num_funs) in the
system.

Metric analysis

Purpose. Classes in an Object-Oriented system typically have a single responsibility. In this task, participants have to locate
classes with the highest number of functions (or methods), which are often good candidates for refactoring (e.g., split class).

𝐄𝟐 𝐓𝟑 Description. Find the three source code files (not testing files) with the highest lines of code per function
(i.e., loc_per_function) in the system.

Metric analysis

Purpose. Lines of code per function is a good indicator to identify classes with very large methods, hence good candidates for
refactoring, maintenance activities, or quality assurance.

𝐄𝟐 𝐓𝟒 Description. Find the three source code files (not testing files) with the highest Cyclomatic Complexity Number (i.e., CCN). Metric analysis
Purpose. The Cyclomatic Complexity Number measures the number of linearly independent paths through a piece of code. Most
of the time, complex pieces of source code are good candidates for refactoring.

𝐄𝟐 𝐓𝟗 Description. The base/area of the buildings represents the number of functions in the code file (num_funs), and the height
represents the lines of code per function in the code file. Therefore, the volume (base x height) corresponds to the total number
of lines of code. Find the three source code files (not testing files) with the highest lines of code in the system. Say their names
in order.

Metric analysis
& Tool insight

Purpose. Lines of code, as lines of code per function, is a good indicator to identify classes with very large files, hence good
candidates for refactoring, maintenance activities, or quality assurance. Moreover, the whole volume is another metric that can
be analyzed by the tool

𝐄𝟐 𝐓𝟏𝟎 Description. Find the source code file (not testing files) with the highest lines of code per function (highest loc_per_function)
inside the src/ca/mcgill/cs/jetuml/diagram/nodes folder.

Code location

Purpose. Finding a specific file in a folder has the purpose of verifying if the tool provides the necessary information to search
for a specific file that is difficult to locate in a general view.

𝐄𝟐 𝐓𝟏𝟏 Description. Now that you are more familiar with JetUML, can you locate the core part of the system, i.e., the most important
files or packages? Please explain briefly why do you think that this is the core.

Tool insight

Purpose. This task was not considered an integral part of the experiment, but it gave us feedback on the degree to which our
visualization supports users in locating the key parts of a software system.
Fig. 7. Experience of participants (second experiment). Areas are: programming (Exp
PRG), use of IDE (Exp IDE), software visualization (Exp SoftVis), and virtual reality
(Exp VR).

corresponding to the first commit of March 25, 2021 (see Fig. 5(a)),
Half of the participants (13) interacted with them immersed in VR (VR
7

participants) while the other half (13) interacted with them in a desktop
with a traditional 2D screen (on-screen participants). The detailed setup
for each half is as follows:

• VR participants performed the experiment using the Oculus
browser in an Oculus Quest 2 headset, in immersed VR mode.

• On-screen participants performed the experiment using the
Chrome browser on a desktop computer with a traditional screen.

In both cases, during the experiments participants are required to
talk aloud when starting each task, and when answering the question
posed for determining that a task is completed. The experiments were
followed by a supervisor who took note of the answers of the par-
ticipants. Before their experiment, participants were invited to enter
a training scene in the same environment (VR or on-screen) of their
experiment, to become as much familiar with it as reasonably possible.
The training scene was a BabiaXR-CodeCity visualization with random
data, and instructions about how to move around and interact with
the visualization. During the experiment, all participants received the
description of the tasks by means of banners in the scene.

Tasks. In this second experiment, participants were asked to com-
plete 7 tasks, summarized in Table 2. With respect to the first experi-
ment, there are two new tasks (𝐄𝟐 𝐓𝟗 and 𝐄𝟐 𝐓𝟏𝟎) that are highlighted
in red in the table. The task identifiers have the 𝐄𝟐 prefix to make it
clear that they are of the second experiment. Tasks 𝐄𝟐 𝐓𝟗–𝐄𝟐 𝐓𝟏𝟏 are
numbered this way to facilitate consistency with the first experiment
(i.e., task 𝐄𝟐 𝐓𝟏𝟏 is the same as 𝐄𝟏 𝐓𝟏𝟏 in the first experiment).

Answers. To provide answers to questions in each task, all partic-
ipants had to speak aloud when they have the final answer for the
task. For each task, participants were also asked to assess the level of
difficulty, from ‘‘strongly disagree’’ to ‘‘strongly agree’’ with the task
being difficult.

Tracking results. For each task in 𝐄𝟐 𝐓𝟏–𝐄𝟐 𝐓𝟏𝟎 the same parame-
ters were tracked as in the first experiment: how long did it take for the
subject to produce the result (as a proxy of efficiency), and the actual
answer (as a proxy for correctness). Additionally, we also tracked time
to completion for 𝐄 𝐓 .
𝟐 𝟏𝟏

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Fig. 8. First experiment: Correctness percentage for tasks asking for top 3 files according to a certain metric.
4. Results

This section summarizes the results of the two experiments in terms
of correctness (see Section 4.1) and completion time (Section 4.2).

4.1. Correctness (𝐑𝐐𝟏)

For answering 𝐑𝐐𝟏 (How does the accuracy of participants im-
mersed in VR compare to that of participants using the on-screen
version of BabiaXR-CodeCity?) we analyzed how correct were the an-
swers that participants in the experiment provided for 𝐄𝟏 𝐓𝟏–𝐄𝟏 𝐓𝟖
(in the first experiment) and 𝐄𝟐 𝐓𝟏–𝐄𝟐 𝐓𝟒, 𝐄𝟐 𝐓𝟗, and 𝐄𝟐 𝐓𝟏𝟎 (second
experiment):

• 𝐄𝟏 𝐓𝟏, 𝐄𝟏 𝐓𝟓 and 𝐄𝟐 𝐓𝟏 asked to identify the part of the city
that corresponded to test code. These tasks were evaluated by
checking if the participant identified the correct geographical part
of the city. We defined the correctness percentage for these tasks
as the percentage of participants whose answer was correct.

• All other tasks asked for a top 3 list of files, according to some
metric. They were evaluated for exact match and for close match:

– For exact match, each of the files answered was compared
with the corresponding position in the top 3 of the oracle.
The result was considered ‘‘correct’’ if the answer was exact
(e.g., same position in the oracle). We defined correctness
percentage for each of the three files in each answer as
the percentage of participants whose answer was correct for
that file.

– For close match, each answer was checked against the top 5
files in the oracle, thus allowing for some error. The result
was considered ‘‘correct’’ if that file was in the top five of the
oracle. We defined correctness percentage as the percentage
of files in the answers that were correct.
8

First experiment (𝐄𝟏)
Task 𝐄𝟏 𝐓𝟏 and task 𝐄𝟏 𝐓𝟓 were correctly answered by all partic-

ipants (both VR and on-screen), who were able to identify the zone
of the city corresponding to test code. This is a clear indication that
users had no difficulty in identifying a block of code (e.g., the test
directory).

Fig. 8 summarizes the percentages of correctness for exact match
and for close match for tasks 𝐄𝟏 𝐓𝟐–𝐄𝟏 𝐓𝟒 and 𝐄𝟏 𝐓𝟔–𝐄𝟏 𝐓𝟖. For exact
match, Fig. 8(a) shows the correctness percentage for each of the three
files in the answers to the corresponding task. In general, results for on-
screen are better than for VR, by a margin of about 20%, but still results
for VR are well over 60% in most cases. For close match, Fig. 8(b) shows
the correctness percentage for all files in the answers, split by VR or
on-screen participants. In this case, the results are very similar for both
VR and on-screen participants.

These results show that VR participants have consistently answered
with lower accuracy when compared to on-screen participants. As
expected, the results are better for both types of participants when
comparing their answers to the Top 5 files, since a certain margin of
error is allowed.

Despite the different results, for all 8 tasks both VR and on-screen
participants provided similar answers with respect to the difficulty of
the tasks (see Fig. 9).

However, more VR participants found some tasks more difficult than
on-screen participants (‘‘agree’’ with ‘‘did you find the task difficult?’’).
Checking the qualitative feedback obtained after the experiment, it
seems the main reason for this difference was the lack of familiarity
with the VR headset and its interaction possibilities.

Second experiment (𝐄𝟐)
𝐄𝟐 𝐓𝟏 was correctly answered by all participants (both VR and on-

screen), who were able to locate the zone of the city where test code is
displayed. This result, consistent with the first experiment, reinforces
the fact that participants can easily locate a block of code.

For tasks 𝐄𝟐 𝐓𝟐–𝐄𝟐 𝐓𝟒, 𝐄𝟐 𝐓𝟗, and 𝐄𝟐 𝐓𝟏𝟎, Fig. 10 details the
percentages of correctness for exact match and for close match. For

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Fig. 9. First experiment: answers to ‘‘Did You Find the Task Difficult?’’.

exact match, Fig. 10(a) shows the correctness percentage for each of
the three files in the answers to the corresponding task. For four tasks
(𝐄𝟐 𝐓𝟐, 𝐄𝟐 𝐓𝟒, 𝐄𝟐 𝐓𝟗 and 𝐄𝟐 𝐓𝟏𝟎), results are better for VR participants.
For task 𝐄𝟐 𝐓𝟑, results are mixed. These results are in general much
better for VR participants (when compared to on-screen participants)
than in the first experiment.

For close match, Fig. 10(b) shows the correctness percentage for all
files in the answers, split by VR or on-screen participants. In this case,
the results are again very similar for both VR and on-screen partici-
pants, in line with the corresponding results of the first experiment.

In the first new task, 𝐄𝟐 𝐓𝟗, we asked participants to identify the
buildings with the larger volume. It is interesting to observe that its
results are significantly better for VR participants, which could suggest
that volume is better appreciated in VR.

In Task 𝐄𝟐 𝐓𝟏𝟎, instead, several buildings have very similar heights.
That explains the poor results both for VR and on-screen participants.
However, the slightly better results for VR participants could suggest
that small differences in height can be better appreciated in VR.

Contrary to the first experiment, the new results show that VR par-
ticipants have in general answered with better accuracy than on-screen
participants. This could be due to the adjustments that we performed.
Once again, despite the different results, both VR and on-screen par-
ticipants provided similar answers with respect to the difficulty of the
tasks (see Fig. 11). However, some more VR participants found some
tasks difficult. We attribute that to the lack of familiarity with the VR
headset and its interactions, as we did for the first experiment.

4.2. Completion time (𝐑𝐐𝟐)

For answering 𝐑𝐐𝟐 (How does the efficiency of participants im-
mersed in VR compare to that of participants using the on-screen
version of BabiaXR-CodeCity?) we analyzed the completion time for the
tasks 𝐄𝟏 𝐓𝟏–𝐄𝟏 𝐓𝟖 (i.e., first experiment) and 𝐄𝟐 𝐓𝟏–𝐄𝟐 𝐓𝟒, and 𝐄𝟐 𝐓𝟗–
𝐄𝟐 𝐓𝟏𝟏 (i.e., second experiment). Table 3 summarizes the results of this
analysis, which are also presented as box plots in Figs. 12 and 13. The
difference in completion time between VR participants and on-screen
participants is significant.

Across all tasks, VR participants were faster than on-screen par-
ticipants. On average, they were 1 min and 12 s faster in the first
experiment and almost 1 min in the second one. This difference reaches
its peak in the first experiment in task 𝐄𝟏 𝐓𝟏 where VR participants were
on average 2 min and 10 s faster than on-screen participants to identify
the test directory. In the second experiment, the peak is in task 𝐄𝟐
𝐓𝟐 where VR-BabiaXR participants were 1 min and 37 s faster.

To understand whether these differences are statistically significant,
we ran the Mann–Whitney U Test [17], a non-parametric unpaired
test suitable to compare differences between two independent groups
(VR and on-screen participants). Columns U and p-value in Table 3
report the results: across all tasks, differences in task completion times
between VR and on-screen participants are statistically significant. To
quantify the amount of difference between both groups we also report
the value of the Cliff’s Delta effect size measure [18] for the magnitude,
9

Table 3
Completion time for all tasks, and statistical analysis (Mann–Whitney U Test and Cliff’s
Delta effect size).

ID VR Screen (S) Mann–Whitney U Test Cliff’s

(m:ss) (m:ss) U p-value Delta

𝐄𝟏 𝐓𝟏 1:47 3:57 128.0 ≈0.001 0.77
𝐄𝟏 𝐓𝟐 1:50 3:46 129.0 ≈0.001 0.79
𝐄𝟏 𝐓𝟑 1:42 3:00 137.0 <0.001 0.75
𝐄𝟏 𝐓𝟒 0:57 1:38 120.0 ≈0.006 0.67

𝐄𝟏 𝐓𝟓 0:16 1:00 144.0 <0.001 1.00
𝐄𝟏 𝐓𝟔 1:01 1:56 138.0 <0.001 1.00
𝐄𝟏 𝐓𝟕 1:05 2:11 128.5 ≈0.001 0.78
𝐄𝟏 𝐓𝟖 0:28 1:12 144.0 <0.001 1.00

𝐄𝟏 All 1:08 2:20 7531.0 <0.001 0.63

𝐄𝟐 𝐓𝟏 0:47 2:13 156.0 <0.001 1.00
𝐄𝟐 𝐓𝟐 1:24 3:01 162.0 <0.001 1.00
𝐄𝟐 𝐓𝟑 1:37 2:05 124.0 0.045 0.78
𝐄𝟐 𝐓𝟒 1:35 2:18 127.0 0.031 1.00
𝐄𝟐 𝐓𝟗 0:41 1:03 142.5 ≈0.002 1.00
𝐄𝟐 𝐓𝟏𝟎 1:49 2:31 144.0 ≈0.003 1.00
𝐄𝟐 𝐓𝟏𝟏 1:58 2:46 126.0 0.035 1.00

𝐄𝟐 All 1:24 2:16 6429.5 <0.001 0.63

and the corresponding range of Cliff’s Delta following the suggestion by
Romano et al. [19]. Our results show that across all tasks the effect size
is large (𝛿 > 0.474).

4.3. Final task & feedback

At the end of the experiment, we asked participants to perform a
high-level task (𝐄𝟏 𝐓𝟏𝟏 in the first experiment, 𝐄𝟐 𝐓𝟏𝟏 in the second):
to locate the ‘‘core’’ of JetUML. All participants provided a reasonable
answer (e.g., the src/ca/mcgill/cs/jetuml directory) and rea-
soned about why that was their answer. Some entered into more details
and highlighted specific subdirectories (or files) based on different
features of the visualization (e.g., high density of buildings, bigger
classes, more complex files). In any case, we did not observe remarkable
differences between VR and on-screen participants in any of the two
experiments. In the second experiment, where we measured completion
time of 𝐄𝟐 𝐓𝟏𝟏, we observed that VR participants were faster than
on-screen participants, also in this deliberately vague task.

At the end of the experiment, we asked participants to provide us
with some feedback on the experiment itself. All participants agreed
that the experiment was not too difficult. We also collected some qual-
itative feedback that we leveraged to improve the second experiment.

4.3.1. Feedback on the first experiment
On-screen participants agreed that the experiment was not difficult.

Some of them even agreed that was easy (e.g., ‘‘Not at all. For me,
it was easier to identify different buildings per color’’, ‘‘No, it was quite
easy’’, ‘‘This experiment is not difficult once you read the instructions’’,
‘‘Overall it wasn’t difficult’’). Some of them detailed that some parts of
the experiment were difficult to address, e.g., differentiate geometric
features, ‘‘In the heights, it was a bit difficult for me to differentiate’’, ‘‘The
other factor that made the experiment more complicated than it could be
are the colors, the difference is not enough to make a distinction in some
cases, so I needed to use the tooltips’’, ‘‘With respect to the experiment
itself, perhaps the most challenging was to differentiate the metrics that are
represented by the building’’, and ‘‘And it is difficult to find the highest
buildings sometimes’’ are comments that represent the problem. This
led us to improve the scene in the second experiment, regarding the
differences between the characteristics of the building (i.e., height,
area, and color).

On-screen participants also reported issues with the user interface
of our tool when it comes to movements, interactions, and camera. We
received feedback like ‘‘I would have liked to be able to adjust the scrolling

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
Fig. 10. Second experiment: Correctness percentage for tasks asking for top 3 files according to a certain metric.
Fig. 11. Second experiment: answers to ‘‘Did You Find the Task Difficult?’’.

Fig. 12. First experiment: completion times (in seconds). VR participants (top),
on-screen participants (bottom).

sensitivity, as there were times when it was difficult for me to position myself
in a certain position/height for a better view of the city’’, ‘‘WASD controls
are very sensitive’’, ‘‘The trickiest part was getting used to the controls as
they are not as precise as they could be, so finding the right positioning
to correctly perceive the details was a bit difficult and I spent some time
finding out ways of moving the camera around properly’’. To mitigate
10
Fig. 13. Second experiment: completion times (in seconds). VR participants (top),
on-screen participants (bottom).

these problems, in the second experiment we added a training scene for
on-screen participants to familiarize themselves with the movements.

VR participants also agreed that the experiment was not difficult.
Some of them agreed with on-screen participants that it is difficult to
distinguish between heights (e.g., ‘‘it is hard to compare different heights
and because of the fact that some buildings hide each other’’, ‘‘oftentimes
it’s hard to see some of the entities because they are hidden or have similar
metrics’’). We took this problem into account when refining the setup
for the second experiment. Only one participant reported that being not
familiar with VR was a difficulty for realizing the experiment (‘‘I was
not familiar with VR so it was difficult for me to point to things and hard
to read because of glasses’’).

VR participants also provided some suggestions: ‘‘Raise the floor
level, use colors also for platforms (i.e., to identify the complexity)’’,
‘‘Buildings could be taller (or ground level could be lifted)’’, or ‘‘You could
add means to automatically highlight the top 3 source code files matching
a particular filter, say the top 3 files ordered by complexity’’. We tried to
address some of them in the second experiment.

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.

d
u
m
b
i
o
b
‘
o
s
a
r
i
i
t
t

t
a
h

w
t
t
t

In Section 3.2 we detailed the problems that were identified, and
the changes we made to the design of the second experiment to address
them.

4.3.2. Feedback on the second experiment
In this second experiment, two on-screen participants agreed that

the experiment was difficult. One of them gave us the reason, ‘‘It was
ifficult because I’m not used to 3D environments and video games, so the
se of keyboard and mouse is a bit tricky for me. So I would improve move-
ent’’. This is something that we tried to mitigate by adding the training
efore the experiment, but apparently, for this participant, the train-
ng was not enough. In general, compared with the first experiment,
n-screen participants had fewer problems in distinguishing between
uildings with similar features. Only one of them reported a problem:

‘I would improve the height scale to notice small changes’’. The inclusion
f the task about the volume was specifically difficult for some on-
creen participants (‘‘The volume is the most difficult task’’, ‘‘The task
bout the volume doesn’t contribute much’’). On-screen participants still
eported problems with the interface and the movements: ‘‘Movement
ssues, hard to put the camera in a specific point (to see the heights for
nstance). Task 7 is difficult to know’’, ‘‘It is hard to move the camera with
he mouse and keyboard’’ and ‘‘The interface is fuzzy when you open more
han one-quarter tooltip’’.

Some on-screen participants also provided positive feedback about
he tool and scenario, ‘‘The system is clearly represented, with its modules’’
nd ‘‘The building image looks really useful, the color was really useful, the
eight was helpful’’.

On the other hand, all VR participants reported that the experiment
as not difficult, but three of them reported that the new task related to

he volume was hard: ‘‘Show the value for the volume, it’s tough to compute
he volume by hand’’, ‘‘The volume was difficult because I would multiply
he values and the differences are not enough’’, and ‘‘It’s hard to estimate

the volume’’ are the comments. We wanted to add this task due to its
difficulty level forcing the user to perceive volume without providing
a number. After the improvements thanks to the feedback of the first
experiment, there were some VR participants that pointed out other
issues to improve regarding the scene: ‘‘I suggest raise the city level’’, ‘‘It’s
hard to point to very thin entities (e.g., Node.java)’’, and ‘‘Some buildings
are hard to point, the thinnest’’ are examples of these troubles.

One participant had trouble with the VR glasses: ‘‘Oftentimes the view
is blurry, but I believe it’s because I wear glasses’’. VR participants also
provided positive feedback, ‘‘I like the fact that you can crouch to see the
heights of buildings’’ shows a good point about VR immersion, and ‘‘The
more you do tasks, the easier is. It is easy to understand’’.

5. Discussion

Our results show that VR participants were in general less correct
in their answers than on-screen participants in almost all the tasks
of the first experiment. However, in the second experiment, the VR
participants improved their results, being more correct than on-screen
participants in several tasks. This effect is more clear in tasks that
require finding buildings with small variations among the largest ones.
For example, in the task of finding a specific building in a specific
neighborhood with very little differences between the buildings (𝐄𝟐
𝐓𝟏𝟎) VR participants have better accuracy. The difference is not high,
but it is noticeable.

There are a number of reasons that might explain the improvements
in the second experiment. One of the main reasons could be the
training we included in the second experiment both for on-screen and
for VR subjects, which we introduced with the aim to balance both
environments. In the first experiment, half of the VR participants had
never used a VR headset prior to our experiment. But using a VR
headset is an experience that in the beginning can be quite disorienting.
Adding a dedicated training session gives the subject the opportunity to
get familiar with VR immersion, the use of the headset and the controls,
11
and their effect on movement. This could explain that subjects in VR
are more accurate in the second experiment. The training would have
a smaller effect on on-screen participants since they would already be
familiar with the on-screen environment, and the adaptation is easier
since for using on-screen technologies the use of keyboard and mouse
is much more widespread (although they would need to adapt to using
the arrow/WASD keys for movement). Training would have little or no
effect in improving their accuracy when performing the tasks.

Indeed, if we observe how the tasks were solved throughout the
experiment in terms of efficiency and correctness, VR participants seem
to get better task after task, especially in the first experiment. This sug-
gests that if users are more accustomed to the use of VR headsets, the
difference in accuracy could be narrowed if not completely nullified.
However, it remains to be investigated whether this is actually the case.

Following the feedback of the participants in the first experiment,
as we described in Section 3.2, we also introduced some changes in the
scale and layout of the software city in VR, without changing the layout
algorithm. This could also contribute to the improvements that can be
observed in the comparison of the results of the two experiments.

However, as a general note, it is important to realize that the use of
VR devices is still not widespread, as we have seen in the demographic
data for both of our experiments: participants had little or no previous
experience with VR immersion. This means that participants in the
experiment started with a certain disadvantage since they had to learn
to work in VR immersion at the same time that they completed the
tasks in our experiments. It remains to be investigated whether, as more
people become accustomed to VR devices, the correctness of people
using a VR improves.

When we focus on completion time, the picture is completely dif-
ferent. Despite lacking experience in VR headset usage, VR participants
were considerably faster than on-screen participants across all tasks.
As discussed in Section 4, the difference across all tasks is statistically
significant. In some of the tasks, VR participants completed them in
less than half the time of on-screen participants. We obtained similar
results also on the second experiment, which provide more evidence
about program comprehension tasks being indeed performed faster in
VR.

This result suggests that VR immersion could play a pivotal role
when carrying out software comprehension tasks in a 3D environment.
Interacting with a VR headset is similar to interacting in the real world,
using more natural gestures than when working on-screen. You can
move your head to look around, kneel down to see the world from
a lower perspective, or just move around to get a better angle of
vision. Besides, not everybody is used to navigating 3D environments
on-screen with arrow/WASD keys and a mouse. Even with the training
inserted in the second experiment, which slightly improved the results,
3D on-screen interactions are more cumbersome, less natural, and,
as suggested by our results, less effective when compared with VR
immersion.

For putting all the results in context, it is also important to notice
that, despite our best efforts and intentions, BabiaXR-CodeCity is still a
prototype, not yet fully optimized for VR. We think there is still a lot
of room for improvement when it comes to a number of concerns that
pertain exclusively to VR, such as:

Navigation. Currently, navigation in BabiaXR-CodeCity is based on
walking around (which needs real space, and is usually not appropriate
in many environments), or based on gaze (to select the orientation
of the camera) and a single-hand controller (to gather additional in-
formation on entities). Many VR applications, especially games, use
both hand controllers in conjunction with gaze and walking around,
allowing for more natural and complex movement options. Also, there
are different types of artificial VR locomotion13 that we did not yet

13 Artificial VR Locomotion: https://developer.oculus.com/learn/artificial-
locomotion.

https://developer.oculus.com/learn/artificial-locomotion
https://developer.oculus.com/learn/artificial-locomotion

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.

t
3
(
i

h
a
e
t
t
e
t
e

o
t
t
i
o
c
t

l
s
t
t
o
2
o
t
i
t
e
i
t
c
f

6

e

r
a
c

c
e
a

t
f
a
e
f
r

a
t
b
o
a

explore. This means there is still untapped potential in making our
environment more convenient and efficient in terms of navigation.

Physical size. In a classical first-person 3D on-screen visualization,
here is a tacit assumption that the viewer, while navigating within the
D environment, has no ‘‘physical’’ size, but is a mere point of view
i.e., a camera) in the environment. In VR this is quite different. As
n reality, there is the question of scale: ‘‘how big’’ is the user within the

environment?. If we look at Fig. 5(a), the user is standing in a room look-
ing at the city visualization which sits atop a slab. From this, we can
infer that if the visualization was physical, it would be as big as a large
dining table. However, the city could be represented as even smaller,
or much larger, than a real-scale city. Which representation is more
convenient and efficient? Would allowing users to change the scale
will help them to be more comfortable and efficient? More research
is needed to answer these questions, but we think both convenience
and performance could be improved by tuning this factor appropriately.
In the second experiment, we improved this physical size for the VR
environment, making it more accessible while immersed in VR, which
maybe was one of the reasons for the gains in correctness.

Interaction. In the current version, interactions with the visual-
ization in BabiaXR-CodeCity are very limited. Users can just point at
buildings and neighborhoods, and see banners with extended informa-
tion. Other interactions could be used to improve the user experience.
For example, in a small-scale city, users could ‘‘touch’’ buildings, get-
ting extended information that way. Or they could just rotate the whole
city, and enlarge and shrink it as they want to see details or the whole
picture.

In summary, we consider that the results of our experiments show
that VR CodeCity is comparable to on-screen CodeCity , with respect to
the correctness of results, and much better with respect to efficiency.
Considering that VR headsets are still a rather novel technology and
that our immersive VR version of the experiment is still under-explored,
we believe our study paves the way for a number of follow-up studies
and implementations. As VR devices improve, as people get more accus-
tomed to using them, and as software for building applications for them
becomes more capable of producing good interactions and user experi-
ences, we expect that metaphors such as CodeCity get increasingly more
useful and usable.

We also have shown how our multi-platform implementation of
CodeCity , which can work very similarly both on-screen and in VR,
can help to fairly compare those environments for metaphors used for
software comprehension. In fact, it is a lucky chance that the imple-
mentation in the browser makes it so easy to compare the same scene,
and essentially the same app, in both on-screen and VR environments:
only a handful of technologies offer this opportunity. Since most of the
details of running on different platforms are dealt with by the browser,
we could focus on building a high level application implementing the
CodeCity metaphor, and not dealing with the details of how to render
the scene, or how to code the interaction of the user with it.

Finally, the availability of the application in the browser also sim-
plifies the experiments. No specific hardware needs to be deployed,
since it is easy to find devices (both screen-based and VR-based) with
a browser supporting the needed standards. Users can just launch a
browser, point it to a given URL, and start running the experiment.
We expect that this approach may also help, in the future, to have
experiments with a much larger number of subjects, since in principle,
anyone with access to on-screen or VR browsers could volunteer to be
one of them. This even opens the door to semi-automated experiments,
where subjects select when and where they want to run the experiment,
and everything is performed and recorded for future examination,
online. From this point of view, our second experiment was much more
automated than the first one, and we feel there is still a lot of room
for improvement in this area, with relatively little effort. However,
ensuring that the conditions in which the experiment is performed,
and minimizing the effect of confounding variables, will be a challenge
if automation is pushed further. And of course, it will depend on the
12

fraction of potential participants with access to VR devices. t
6. Threats to validity

6.1. Internal validity

Internal validity is related to uncontrolled factors that can influence
the effectiveness. In our case, it pertains to:

Subjects. In both experiments, we ensured that all the participants
ad experience in different relevant topics about programming using
questionnaire, mitigating the threat that they were not competent

nough. Moreover, we asked for their experience in the relevant topics
o mitigate the threat that the participant’s experience was not dis-
ributed fairly. However, their training for the environment of their
xperiment (on-screen or VR) was not uniform, with persons par-
icipating in the VR experiment being much less experienced in VR
nvironments than on-screen participants in on-screen environments.

Tasks. The choice of tasks may have been biased in favor of VR or
n-screen participants. We mitigated this threat by developing scenes
hat were valid for both VR and on-screen, with exactly the same
asks, so that the level of difficulty was as similar as possible. We also
ncluded tasks that put both modes at a disadvantage: tasks focused
n precision could be easier on-screen, while tasks focused on locality
ould be easier in VR. Not controlled aspects (e.g., the relative size of
he buildings in VR) could have an influence on the results.

Lack of training. We had two problems with respect to a potential
ack of training, which could lead to incorrect results, compared to the
ame experiment with adequate training. In the case of VR participants,
hey had little or no previous experience with VR immersion, and with
he VR devices we were using. To mitigate this problem, we offered all
f them to run the generic starter tutorial First Steps of the Oculus Quest
headset. But then we had also a potential lack of training in the use

f BabiaXR or CodeCity . In both cases (VR and on-screen participants)
he text to be followed for performing the tasks explains how the tool
s used and how the interaction with the elements works. But some
raining could be convenient. To mitigate this threat, in the second
xperiment we provided the participants with a training scene to famil-
arize themselves with the environment. For on-screen participants, this
raining scene included a tutorial about the movements and interaction
ontrols, forcing the participants to get used to the arrow/WASD keys
or moving and mouse clicking for moving the camera.

.2. External validity

External validity relates to the generalizability of the results of the
xperiment. In our case, it pertains to:

Sample Size. The number of participants in the experiments is
elatively small. Although we tried to recruit a representative sample
nd we repeated the experiment, a larger sample would lead to more
onclusive results.

Subjects. We mitigate the threat of subject representativeness by
ategorizing them, including the job position and the years of experi-
nce in the programming topics, obtaining a balanced mix of academics
nd professionals.

Target system. Another threat is represented by the choice of the
arget system: JetUML. Participants did not know it in advance, except
or two (one for each experiment) who knew it ‘‘a little’’. We cannot
ssess how appropriate or representative JetUML is for the reverse
ngineering tasks we designed, but the consistent variations in solutions
or the same task in both VR and on-screen environments signal that
esults could be extensible to other systems.

Experimenter effect. One of the experimenters is also one of the
uthors of BabiaXR-CodeCity , which may have influenced any subjec-
ive aspect of the experiment. For example, task solutions may not have
een graded correctly. To mitigate this threat, another author carried
ut part of the experiments as a supervisor. Both experimenters built
model of the responses based on previous experiments in the litera-
ure (e.g., [15,20]). Even if we tried to mitigate this threat extensively,

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
we cannot exclude all possible influences on the results of the two
experiments.

Time measurement. In the first experiment, to mitigate the threat
that task completion times are not exact, the supervisor was present
and noted how long the participant took to complete the task. The
participant also notified the supervisor when she had completed each
task, thus having a double-check of the completion time. In addition,
the writing time of the Screen-BabiaXR participants’ responses in the
external form is not significant, so it does not pose an additional threat.
Mitigating these threats, the difference between answering using a form
for the Screen-BabiaXR participants and the aloud method for the VR-
BabiaXR participants does not produce a threat. We planned to use
in-scene mechanisms for answering the tasks in VR-BabiaXR and on-
screen forms in Screen-BabiaXR. We did that in the second experiment,
forcing all the participants (VR-BabiaXR and Screen-BabiaXR) to speak
aloud, standardizing the time spent reporting answers (i.e., with respect
to the first experiment where Screen-BabiaXR participants had to fill an
external form to report the answers).

Task texts. To mitigate the threat that a participant could start
performing a task while still reading the task description (i.e., with
the city is in front of her, as in the first experiment), in the second
experiment we placed the task descriptions in a different position
(i.e., rotated 90 ◦CW with respect to the city), forcing VR-BabiaXR
participants to move the head to read the assignments and VR-BabiaXR
participants to move the camera to read the assignments, in both cases
losing sight of the city.

On-Screen and VR movement. The differences in the moving
interface presented by Screen-BabiaXR and VR-BabiaXR (i.e., sensitivity,
speed, etc.) can pose a threat to the validity of results, specifically in
what refers to completion time. Screen-BabiaXR participants from the
first experiment reported that they experienced some sensitivity issues
when handling the camera (moving around in the scene). To mitigate
this threat, we added a training for the second experiment with no time
limit for both VR-BabiaXR and Screen-BabiaXR, for participants to get
used to the environment, movements, and interaction. After the second
experiment, most participants did not report this sensitivity issue, but
some of them still reported movement problems, indicating that an
improvement to the Screen-BabiaXR interface should be made to fully
mitigate this threat.

7. Previous and related work

A metaphor is a stable and systematic relationship between two
conceptual domains, according to the theory developed by Lakoff and
Johnson in the cognitive linguistics field [21]. The metaphor used
depends directly on the software artifacts to represent [22] and has
to be expressive enough to provide mapping for their relevant features.
Metaphors have long populated the software visualization field, and
the availability of 3D improved the development of more realistic
and easier to grasp visual metaphors. Some examples of early 3D
oriented metaphors are the landscape metaphor [23] for visualizing
the structure of large systems, and the solar system metaphor [24]
for visualization of object-oriented software systems. Several years
later, CodeTrees for visualizing software as a collection of trees [25],
a concept which was later extended [26].

Our work is a part of the research line based on the ‘‘city metaphor’’,
related to civil architecture, influencing software representation. This
line can be traced back to the design patterns by Gamma et al. [27],
rooted in the architectural pattern language proposed by Alexander
et al. [28].
13
Fig. 14. The original CodeCity tool.

7.1. Codecity

The first implementation of the city metaphor was Software World
[1], which visualized software systems as buildings in a city. Afterward,
several approaches were explored to support developers in maintaining
software systems as fulfilling program comprehension tasks. Panas
et al. [29–31] presented a software city showing information about
static and dynamic data, and Marcus et al. [32] a city-like software vi-
sualization. Verso [33] was based on landscapes, but with the influence
of the city metaphor.

In 2007 CodeCity was presented [6], raising the approach to a
new level implementation-wise. Fig. 14 shows the original CodeCity
application, including the interface for interacting with the city and
the metrics details.

CodeCity showed that it could not only be used for program com-
prehension [6], but also for software evolution analysis [34] and design
problem analysis [35].

It sparked a flood of tools and approaches building on the same
metaphor, leading to slightly different visualizations, showing the
power and flexibility of the metaphor.

Scarsbrook et al. [36] presented a tool for visualizing and debugging
large-scale JavaScript program structure with treemaps, Brito et al. [3]
presented a similar approach focusing on the Go programming lan-
guage. Steinbrückner et al. [37] proposed a different layout for the
city, based on streets and sub-streets for the tree structure, allowing
to observe the time evolution of the software system. Gamification
has also been used in combination with the city metaphor to perform
software comprehension tasks in CodeMetropolis [38], based on the
Minecraft game engine. M3tricity [39], a recent re-implementation
of CodeCity by the original research group, is a web application to
visualize software systems as evolving cities that treats evolution as a
first-class concept.

7.2. From 3D to virtual reality

One of the early explorations of using VR for visualizing software
was done by Young and Munro [40], at the time quite a technical
feat. Another early VR-based approach is Imsovision [41], which focuses
on C++, defining some metrics that nowadays are still used in the
literature. More recently, thanks to technological advances, software
visualizations based in VR become an active field of research.

Fittkau et al. proposed a VR implementation of ExplorViz [42],
based on the first versions of WebVR, focusing on the runtime and
static characteristics of object-oriented programming software systems.
Vincur et al. [4,43] proposed a VR city for analyzing object-oriented
software. Steinbrückner and Lewerentz [5] proposed stable city lay-
outs for evolving software systems, using layouts other than treemaps.
Getaviz [44] also uses the city metaphor to generate structural, be-
havioral, and evolutionary views of software systems for empirical
evaluation.

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.

a

8

w
c
p
s
B
t
o
p
r
o

m
i
M
t
v
w
B
v

CityVR [45], developed with Unity3D, provides the same metrics as
the original CodeCity , adding interactions using the gaze of the user in
the VR headset, and its controllers. The technique we used for moving
in the scene technique has similarities with their approach.

Capece et al. [46] visualized Java systems with the Unreal Engine
4 using the city metaphor in VR. Most of the current approaches are
based on non-web technologies (i.e., Unreal Engine or Unity), which
differentiates them from our approach, since BabiaXR is web-based,
allowing the visualization of the city in any modern browser.

Other metaphors have been implemented in VR. Misiak, Schreiber
et al. [47] proposed the island metaphor for visualizing OSGi-based
software systems, introducing and emphasizing the visualization of
dependencies. Schreiber et al. [48] presented an interactive tool that
also visualizes OSGi-based systems with their components, packages,
services, and dependencies in 3D, using a different metaphor including
boxes.

7.3. Validation experiments

Wettel et al. [15] proposed one of the first experiments to validate
the city metaphor as a way to comprehend some aspects of software
systems. Our experiment is designed a great deal after it. Merino
et al. [49] conducted a controlled experiment using 3D visualization of
the city metaphor using a computer screen, an immersive 3D environ-
ment, and a 3D printed model. The authors found that the on-screen
participants perceived the least difficulty to identify outliers, and in
terms of completion time, our results are in line, showing that the
VR participants were faster in resolving the program comprehension
tasks. Rüdel et al. [50] conducted a controlled experiment with 20
participants of the city metaphor but using a different algorithm for the
layout, they compared as well VR to on-screen and they found that the
on-screen participants were faster in resolving the tasks proposed, not
in line with our study, which may indicate that the placement algorithm
is a very important point within the city metaphor. More recently,
Romano et al. [20] conducted a controlled experiment where they
asked the participants to perform program comprehension tasks with
the support of the Eclipse Integrated Development Environment (i.e.,
IDE) with a plugin for gathering code metrics and identifying bad smells
and a visualization tool of the city metaphor displayed on a standard
computer screen and in an immersive virtual reality. Our results are
partially in line with those shown in [20], having as similarities that the
VR-BabiaXR participants are faster than the Screen-BabiaXR participants
nd that the correctness does not worsen significantly.

. Conclusions and future work

We presented two controlled experiments aimed at evaluating
hether VR is well suited to visualize the CodeCity metaphor when

ompared with the traditional on-screen implementation. In both ex-
eriments, subjects were shown a CodeCity-like visualization of the
ame software system, either in VR or on-screen. For that, we used
abiaXR-CodeCity , part of the BabiaXR toolset for 3D data visualization
hat we developed for visualization, and GrimoireLab for the collection
f data from the corresponding software repository. Subjects included
eople from both academia and industry, with a wide range of expe-
ience. Each subject performed 9 (i.e., first experiment, repeating 4
f them in the old snapshot of the JetUML system) or 7 (i.e., second

experiment) tasks related to software comprehension, either immersed
in VR or on-screen. In the first experiment the tasks corresponded to
two moments in the development history of the system, while in the
second, they corresponded to a single snapshot. The feedback collected
in the first experiment helped us improving the design of the second
experiment.

The results of both experiments show that immersion in VR led to
a much shorter completion time for the tasks, compared to on-screen.
In this respect, results were even more clear in the second experiment,
14
which was more carefully crafted to minimize the effect of confounding
variables.

In the first experiment, results show that subjects immersed in VR
have less accuracy than those working in the on-screen environment.
However, in the second experiment, with a more balanced setup, the
accuracy in VR increased considerably, being even better than on-
screen. However, for most of the tasks and in both environments, if we
consider close matches (i.e., answers in Top 5) instead of exact matches,
correctness is always over 90%, making both environments well suited
to solve these tasks.

The higher error rate in the first experiment was due to the lack
of experience with VR devices of participants, the prototypical stage of
our implementation, and the visual similarity of the buildings in some
of the proposed tasks. The qualitative feedback that we received from
subjects in the first experiment allowed us to mitigate these problems
in the second one, which is, in our opinion, the main reason for
the increased accuracy in the VR-BabiaXR environment. The feedback
collected from participants in the second experiment is consistent with
our appreciation.

Overall, we conclude that VR provides a better user experience than
on-screen for issues related to locating, moving, and searching for ele-
ments in the scene. This explains the fact that time to complete is about
half in most tasks performed in VR, compared to on-screen. Considering
these results, it could happen that VR might allow CodeCity-style
visualizations to reach the ‘‘tipping point’’, beyond which they are viable
and useful for practitioners.

An open issue that our study does not answer is to which extent
subjects are directly comparing features of buildings, or relying on
values provided by tooltips when performing the tasks. Tooltips provide
exact numbers, easy to compare, and are obtained just by pointing at
buildings. It would be an interesting future work to know their impact
on results, finding when subjects directly use features of buildings,
and when tooltips, to answer the questions in the study. However, this
would not affect the overall result, since tooltips were available in both
environments.

Virtual reality does not only provide better performance in terms
of speed, and some reasonable but still improvable performance in
terms of accuracy. It also offers a set of unprecedented features, such
as the chances of collaboration between teams of people immersed in
the same VR environment, which we find very promising and which
deserve to be explored. The improvement of accuracy in VR, and the
exploration of these new possibilities, are interesting lines of long-term
future work.

As a result of the work to conduct our experiments, we also de-
veloped an implementation of CodeCity for the browser, which can
run both on virtual reality and screen-based devices. This is a reusable
artifact that other researchers may find useful for extending our studies,
or for exploring what can be done with this technology.

Replication package
The data obtained for our experiments, and the materials needed to

reproduce the experiment are available in the Replication Package.14

CRediT authorship contribution statement

David Moreno-Lumbreras: Conceptualization, Data curation, For-
al analysis, Investigation, Methodology, Software, Validation, Visual-

zation, Writing – original draft, Writing – review & editing. Roberto
inelli: Conceptualization, Data curation, Formal analysis, Investiga-

ion, Methodology, Validation, Writing – original draft, Writing – re-
iew & editing. Andrea Villaverde: Investigation, Methodology, Soft-
are, Visualization, Writing – review & editing. Jesus M. Gonzalez-
arahona: Conceptualization, Formal analysis, Funding acquisition, In-
estigation, Methodology, Software, Supervision, Visualization, Writing

14 Replication Package of the experiments: https://doi.org/10.5281/zenodo.
7010180.

https://doi.org/10.5281/zenodo.7010180
https://doi.org/10.5281/zenodo.7010180

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
– original draft, Writing – review & editing. Michele Lanza: Conceptu-
alization, Formal analysis, Funding acquisition, Investigation, Method-
ology, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
David Moreno-Lumbreras reports financial support was provided by
Community of Madrid. Andrea Villaverde reports financial support
was provided by Community of Madrid. Jesus M. Gonzalez-Barahona
reports financial support was provided by Community of Madrid. Jesus
M. Gonzalez-Barahona reports financial support was provided by Span-
ish Government. Roberto Minelli reports financial support was provided
by Swiss National Science Foundation. Michele Lanza reports financial
support was provided by Swiss National Science Foundation.

Acknowledgments

We acknowledge the financial support of the Community of Madrid,
Spain for the project IND2018/TIC-9669, the Spanish Government
for the project RTI-2018-101963-B-I00 and the Swiss National Sci-
ence foundation (SNSF), Switzerland for the project ‘‘INSTINCT’’ (SNF
Project No. 190113). We also thank all the participants of our experi-
ments

References

[1] C. Knight, M. Munro, Comprehension with[in] virtual environment visualisations,
in; Proceedings Seventh International Workshop on Program Comprehension,
1999, pp. 4–11.

[2] Richard Wettel, Michele Lanza, Visualizing software systems as cities, in: 2007
4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis, 2007, pp. 92–99.

[3] R. Brito, A. Brito, G. Brito, M.T. Valente, GoCity: Code city for go, in: 2019 IEEE
26th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2019, pp. 649–653.

[4] J. Vincur, P. Navrat, I. Polasek, VR city: Software analysis in virtual reality
environment, in: 2017 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C), 2017, pp. 509–516.

[5] Frank Steinbrückner, Claus Lewerentz, Representing development history in
software cities, in: Proceedings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, Association for Computing Machinery, New York,
NY, USA, 2010, pp. 193–202.

[6] Richard Wettel, Michele Lanza, Program comprehension through software habit-
ability, in: 15th IEEE International Conference on Program Comprehension (ICPC
’07), 2007, pp. 231–240.

[7] Brandon Jones, Manish Goregaokar, WebXR device API, in: W3C Working Draft,
2020.

[8] Dean Jackson, Jeff Gilbert, WebGL 2.0 Specification, Khronos Group
Specification, 2020.

[9] Santiago Dueñas, Valerio Cosentino, Jesus M. Gonzalez-Barahona, Alvaro del
Castillo San Felix, Daniel Izquierdo-Cortazar, Luis Cañas-Díaz, Alberto Pérez
García-Plaza, GrimoireLab: A toolset for software development analytics, PeerJ
Comput. Sci. 7 (2021) e601.

[10] David Moreno-Lumbreras, Roberto Minelli, Andrea Villaverde, Jesus M.
Gonzalez-Barahona, Michele Lanza, CodeCity: On-screen or in virtual reality? in:
Working Conference on Software Visualization, VISSOFT 2021, Luxembourg,
September 27-28, 2021, IEEE, 2021, pp. 12–22.

[11] Harrison, Magel, Kluczny, DeKock, Applying software complexity metrics to
program maintenance, Computer 15 (9) (1982) 65–79.

[12] V. Cosentino, S. Dueñas, A. Zerouali, G. Robles, J.M. Gonzalez-Barahona, Graal:
The quest for source code knowledge, in: 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2018, pp.
123–128.

[13] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, Jesus M. Gonzalez-
Barahona, Perceval: Software project data at your will, in: Proceedings of the
40th International Conference on Software Engineering: Companion Proceeed-
ings, ICSE ’18, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 1–4.

[14] Paul Ralph, ACM SIGSOFT empirical standards released, SIGSOFT Softw. Eng.
Notes 46 (1) (2021) 19.

[15] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: a controlled
experiment, in: 2011 33rd International Conference on Software Engineering
15

(ICSE), 2011, pp. 551–560.
[16] Jonathan Sillito, Gail C. Murphy, Kris De Volder, Questions programmers ask
during software evolution tasks, in: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, in: SIGSOFT
’06/FSE-14, Association for Computing Machinery, New York, NY, USA, 2006,
pp. 23–34.

[17] Nadim Nachar, The mann-whitney u: A test for assessing whether two indepen-
dent samples come from the same distribution, Tutor. Quant. Methods Psychol.
4 (2008).

[18] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal questions,
Psychol. Bull. 114 (1993) 494–509.

[19] J. Romano, J.D. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics for
ordinal level data: Should we really be using t-test and cohen’sd for evaluating
group differences on the NSSE and other surveys? in: Annual Meeting of the
Florida Association of Institutional Research, 2006, pp. 1–3.

[20] Simone Romano, Nicola Capece, Ugo Erra, Giuseppe Scanniello, Michele Lanza,
On the use of virtual reality in software visualization: The case of the city
metaphor, Inf. Softw. Technol. 114 (2019) 92–106.

[21] George Lakoff, Mark Johnson, Metaphors we Live by, University of Chicago Press,
1980.

[22] Vladimir Averbukh, Visualization metaphors, Program. Comput. Softw. 27 (2001)
227–237.

[23] Michael Balzer, Andreas Noack, Oliver Deussen, Claus Lewerentz, Software
landscapes: Visualizing the structure of large software systems, in: Eurographics
/ IEEE VGTC Symposium on Visualization, The Eurographics Association, 2004.

[24] Hamish Graham, Hong Yul Yang, Rebecca Berrigan, A solar system metaphor
for 3D visualisation of object oriented software metrics, in: Australasian Sympo-
sium on Information Visualisation, InVis.Au, Christchurch, New Zealand, 23-24
January 2004, in: CRPIT, vol. 35, Australian Computer Society, 2004, pp. 53–59.

[25] Ugo Erra, Giuseppe Scanniello, Towards the visualization of software systems
as 3D forests: The codeTrees environment, in: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, SAC ’12, Association for Computing
Machinery, New York, NY, USA, 2012, pp. 981–988.

[26] Katsuhisa Maruyama, Takayuki Omori, Shinpei Hayashi, A visualization tool
recording historical data of program comprehension tasks, in: Proceedings of
the 22nd International Conference on Program Comprehension, in: ICPC 2014,
Association for Computing Machinery, New York, NY, USA, 2014, pp. 207–211.

[27] Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software, first ed., Addison-Wesley
Professional, 1994.

[28] Christopher Alexander, Sara Ishikawa, Murray Silverstein, A Pattern Language:
Towns, Buildings, Construction, Oxford University Press, New York, 1977.

[29] T. Panas, R. Berrigan, J. Grundy, A 3D metaphor for software production vi-
sualization, in: Proceedings on Seventh International Conference on Information
Visualization, 2003. IV 2003, 2003, pp. 314–319.

[30] Thomas Panas, Rüdiger Lincke, Welf Löwe, Online-configuration of software
visualizations with Vizz3D, in: Proceedings of the 2005 ACM Symposium on
Software Visualization, SoftVis ’05, Association for Computing Machinery, New
York, NY, USA, 2005, pp. 173–182.

[31] Thomas Panas, Thomas Epperly, Daniel Quinlan, Andreas Saebjornsen, Richard
Vuduc, Communicating software architecture using a unified single-view vi-
sualization, in: 12th IEEE International Conference on Engineering Complex
Computer Systems (ICECCS 2007), 2007, pp. 217–228.

[32] Andrian Marcus, Louis Feng, Jonathan I. Maletic, 3D representations for soft-
ware visualization, in: Proceedings of the 2003 ACM Symposium on Software
Visualization, SoftVis ’03, Association for Computing Machinery, New York, NY,
USA, 2003, pp. 27–ff.

[33] Guillaume Langelier, Houari Sahraoui, Pierre Poulin, Visualization-based anal-
ysis of quality for large-scale software systems, in: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, ASE
’05, Association for Computing Machinery, New York, NY, USA, 2005, pp.
214–223.

[34] R. Wettel, M. Lanza, Visual exploration of large-scale system evolution, in: 2008
15th Working Conference on Reverse Engineering, 2008, pp. 219–228.

[35] Richard Wettel, Michele Lanza, Visually localizing design problems with
disharmony maps, in: Proceedings of the 4th ACM Symposium on Software
Visualization, SoftVis ’08, Association for Computing Machinery, New York, NY,
USA, 2008, pp. 155–164.

[36] J.D. Scarsbrook, R.K.L. Ko, B. Rogers, D. Bainbridge, MetropolJS: Visualizing
and debugging large-scale JavaScript program structure with treemaps, in: 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC),
2018, pp. 389–3893.

[37] Frank Steinbrückner, Claus Lewerentz, Representing development history in
software cities, in: Proceedings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, Association for Computing Machinery, New York,
NY, USA, 2010, pp. 193–202.

[38] Gergo Balogh, Tamas Gergely, Arpad Beszedes, Tibor Gyimothy, Using the city
metaphor for visualizing test-related metrics, in: 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol.
2, 2016, pp. 17–20.

http://refhub.elsevier.com/S0950-5849(22)00173-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb2
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb3
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb4
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb4
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb4
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb4
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb4
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb5
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb6
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb6
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb6
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb6
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb6
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb7
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb7
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb7
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb8
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb8
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb8
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb9
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb10
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb11
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb12
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb13
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb14
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb14
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb14
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb15
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb15
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb15
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb15
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb15
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb16
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb17
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb18
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb18
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb18
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb19
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb20
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb21
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb22
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb22
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb22
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb23
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb24
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb25
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb26
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb27
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb27
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb27
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb27
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb27
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb28
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb30
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb31
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb32
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb33
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb34
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb35
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb36
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb37
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb38

Information and Software Technology 153 (2023) 107064D. Moreno-Lumbreras et al.
[39] Federico Pfahler, Roberto Minelli, Csaba Nagy, Michele Lanza, Visualizing
evolving software cities, in: 2020 Working Conference on Software Visualization
(VISSOFT), 2020, pp. 22–26.

[40] P. Young, M. Munro, Visualising software in virtual reality, in: Proceed-
ings. 6th International Workshop on Program Comprehension. IWPC’98 (Cat.
No.98TB100242), 1998, pp. 19–26.

[41] J.I. Maletic, J. Leigh, A. Marcus, G. Dunlap, Visualizing object-oriented software
in virtual reality, in: Proceedings 9th International Workshop on Program
Comprehension. IWPC 2001, 2001, pp. 26–35.

[42] Florian Fittkau, Alexander Krause, Wilhelm Hasselbring, Exploring software
cities in virtual reality, in: 2015 IEEE 3rd Working Conference on Software
Visualization (VISSOFT), 2015, pp. 130–134.

[43] Juraj Vincur, Ivan Polasek, Pavol Navrat, Searching and exploring software
repositories in virtual reality, in: Proceedings of the 23rd ACM Symposium on
Virtual Reality Software and Technology, VRST ’17, Association for Computing
Machinery, New York, NY, USA, 2017.

[44] D. Baum, J. Schilbach, P. Kovacs, U. Eisenecker, R. Müller, GETAVIZ: Generating
structural, behavioral, and evolutionary views of software systems for empir-
ical evaluation, in: 2017 IEEE Working Conference on Software Visualization
(VISSOFT), 2017, pp. 114–118.
16
[45] L. Merino, M. Ghafari, C. Anslow, O. Nierstrasz, CityVR: Gameful software
visualization, in: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2017, pp. 633–637.

[46] Nicola Capece, Ugo Erra, Simone Romano, Giuseppe Scanniello, Visualising a
software system as a city through virtual reality, in: Augmented Reality, Virtual
Reality, and Computer Graphics, Springer International Publishing, Cham, 2017,
pp. 319–327.

[47] Martin Misiak, Andreas Schreiber, Arnulph Fuhrmann, Sascha Zur, Doreen Seider,
Lisa Nafeie, IslandViz: A tool for visualizing modular software systems in virtual
reality, in: 2018 IEEE Working Conference on Software Visualization (VISSOFT),
2018, pp. 112–116.

[48] Andreas Schreiber, Marlene Brüggemann, Interactive visualization of software
components with virtual reality headsets, in: 2017 IEEE Working Conference on
Software Visualization (VISSOFT), 2017, pp. 119–123.

[49] Leonel Merino, Johannes Fuchs, Michael Blumenschein, Craig Anslow, Moham-
mad Ghafari, Oscar Nierstrasz, Michael Behrisch, Daniel A. Keim, On the impact
of the medium in the effectiveness of 3D software visualizations, in: 2017 IEEE
Working Conference on Software Visualization (VISSOFT), 2017, pp. 11–21.

[50] Marc-Oliver Rüdel, Johannes Ganser, Rainer Koschke, A controlled experiment on
spatial orientation in VR-based software cities, in: 2018 IEEE Working Conference
on Software Visualization (VISSOFT), 2018, pp. 21–31.

http://refhub.elsevier.com/S0950-5849(22)00173-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb39
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb42
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb42
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb42
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb42
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb42
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb43
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb44
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb45
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb46
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb47
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb48
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb48
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb48
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb48
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb48
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb49
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb50
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb50
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb50
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb50
http://refhub.elsevier.com/S0950-5849(22)00173-2/sb50

	CodeCity: A comparison of on-screen and virtual reality
	Introduction
	BabiaXR-CodeCity
	CodeCity in BabiaXR
	From source code to a 3D scene

	Experiments
	First experiment
	Experimental setup: Analysis and changes
	Changes

	Second experiment

	Results
	Correctness (RQ1#x)
	First Experiment (E1)
	Second Experiment (E2)

	Completion time (RQ2#x)
	Final task feedback
	Feedback on the first experiment
	Feedback on the second experiment

	Discussion
	Threats to validity
	Internal validity
	External validity

	Previous and related work
	CodeCity#x
	From 3D to virtual reality
	Validation experiments

	Conclusions and future work
	Replication package

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

