
Towards Self-Adaptive IDEs

Roberto Minelli
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Integrated Development Environments (IDEs) provide de-
velopers with tools and facilities to support development activi-
ties. Developers use IDEs to read, understand, and write source
code. Research showed that they spend more time reading
source code than writing it. Reading code is the foundation of
program understanding, which has been estimated to occupy
50% of developers’ work time and to be one of the most
challenging tasks performed by developers. To read and com-
prehend code, developers have also to navigate the system at
hand. During this process developers build their mental models
of it. In general, all software engineering activities happening
inside the IDE (e.g., reading, writing, understanding, and
navigating source code) generate a large amount of events that
we call “IDE interaction data”. Examples include opening a
code browser on a method, inspecting an object at run-time,
editing a line of a method, popping up a refactoring menu, etc.

Unfortunately, current IDEs neglect this information, but
researchers have pointed up its importance. Murphy et al.
showed that it can be used (1) to evolve the development
environment according to user needs, (2) to provide means
to evaluate new tools and application programming interfaces,
and (3) to prevent feature bloat, i.e., the tendency to add
unnecessary features to a software system [1]. Frey et al.
believe that future program investigation tools need to track the
way developers navigate code to support software engineering
activities [2]. Interaction data includes, but is not limited to,
IDE interactions. Our goal is to also leverage interactions with
different information sources outside the IDE, such as bug-
tracking systems and versioning control systems, to evolve
current development environments.

We envision self-adaptive IDEs: IDEs that collect, process,
and leverage the interactions of developers with different
information sources to better support the workflow of devel-
opers. Collecting interaction data means that the environment
monitors the actions that a developer is carrying on inside
the IDE itself and persists them. Then IDEs mine this data
by transforming and structuring it for further use. Finally, the
most important and challenging task is to leverage such data,
either retrospectively or at run-time. Retrospective analyses
serve as a means to understand, characterize, and classify
development sessions. As an initial contribution, we devised
a catalogue of software visualizations to present interaction
data. Views support the analysis of development sessions, for
example, to seize how different development activities are
distributed, to understand which program entities are involved
in a development session, or how the developer interacted
with the UI of the IDE [3], [4], [5]. Leveraging the data at
run-time means exploiting the potential of interaction data
to directly influence, modify, and reshape the working envi-
ronment of developers to support different software engineer-
ing activities, such as comprehending, browsing, navigating,
and editing source code. We envision three main research

directions: live/adaptive visualizations, interaction-based rec-
ommender systems, and adaptive user interfaces (UI). Live
visualizations in sync with the activities of developers help
them to visually follow their sessions and act as immediate
navigation means. We believe that such views can as a “visual
memory” for developers: Developers unconsciously associate
parts of the visualization with relevant source code fragments.
Later they can click on a part of the view and quickly jump
to the desired code snipper. Interactions-based recommender
systems leverage previous interactions to suggest developers
how to quickly accomplish activities such as navigation or
debugging. The IDE, for example, can support better browsing
through software by providing targeted suggestions on which
program entities are more likely to be navigated at a certain
moment in time. Adaptive UIs are elements of the IDE that
reshape themselves to increase the efficiency of developers, for
example by rearranging frequently used UI components, such
as menus and system browsers.

The expected contributions of our Ph.D. research can be
summarized as: (a) The development of a self-adaptive IDE
that features novel elements, such as interaction-based recom-
mender systems and adaptive user interfaces; (b) DFLOW: A
tool to record the workflow of developers; (c) a catalogue of
live and adaptive visualizations to support developers; and a
series of (d) user studies and (e) empirical investigations to
evaluate the usefulness of our approach and better understand
the behavior of developers.

At this stage we developed DFLOW, a tool that silently
captures the interactions happening inside the IDE and en-
ables visual analyses [3] and storytelling [4], [5]. We used
the recorded data as subject for an empirical investigation
that shows, for example, how program comprehension was
underestimated by previous research [6].

REFERENCES

[1] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[2] T. Frey, M. Gelhausen, and G. Saake, “Categorization of concerns: A
categorical program comprehension model,” in Proceedings of PLATEAU
2011 (3rd Workshop on Evaluation and Usability of Programming
Languages and Tools). ACM, 2011, pp. 73–82.

[3] R. Minelli and M. Lanza, “Visualizing the workflow of developers,” in
Proceedings of VISSOFT 2013 (1st Working Conference on Software
Visualization). IEEE, 2013, pp. 1–4.

[4] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing developer
interactions,” in Proceedings of VISSOFT 2014 (2nd Working Conference
on Software Visualization). IEEE, 2014, p. to appear.

[5] R. Minelli, L. Baracchi, A. Mocci, and M. Lanza, “Visual storytelling
of development sessions,” in Proceedings of ICSME 2014 (30th Interna-
tional Conference on Software Maintenance and Evolution), 2014, p. to
appear.

[6] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying program
comprehension with interaction data,” in Proceedings of QSIC 2014
(14th International Conference on Quality Software), 2014, p. to appear.


