
Visualizing the Workflow of Developers
Roberto Minelli and Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Developers use the Integrated Development Environ-

ment (IDE) to develop a system at hand, by reading, understand-

ing, and writing its source code. They do so by exploiting the tools

and facilities provided by the IDE. This also allows them to build

a mental model of the system to perform informed changes. It is

however not clear how and when developers use which facility

and tool, and to what extent the current services o↵ered by the

IDE appropriately support the navigation.

We present an approach to visualize the activities of developers

within the IDE, implemented in a tool: DFlow. DFlow records

all IDE interactions that occur during a development session and

visualizes them through a web-based visualization platform.

I. Introduction

Developers spend much time interacting with Integrated
Development Environments (i.e., IDEs), such as Eclipse1. In
addition to writing new code, they use IDEs to comprehend
existing code by building a mental model of the system.
Kersten & Murphy argued that “programmers spend more
time navigating the code than working with it” [1], which
throws up the question whether IDEs appropriately support the
navigation. For example, Lee et al. claimed that the current
support for refactoring is unintuitive and ine�cient [2].

We want to investigate how, when, and why developers use
the IDE to navigate the software space and to what extent IDEs
support the navigation. We present an approach to visualize the
events that happen while a developer is working on a system.
We implemented the approach in DFlow, which seamlessly
records all the IDE interactions while a developer is working
(e.g., addition of a class, inspection of senders/implementors of
a method, steps in a debugger). DFlow enables retrospective
analyses to understand and characterize the development session
through web-based interactive visualizations.

Researchers proposed a number of approaches and tools
to enhance IDEs and to better support the issues related to
navigation. Röthlisberger et al. developed Autumn Leaves, a
tool to cure the window plague [3]. While navigating the
system, developers are often forced to spawn several windows
or open tabs, many of which quickly became useless. Their
tool automatically suggests which windows or tabs can be
closed, without impacting the current development session, to
reduce the amount of noise present in the IDE. Singer et al.
developed Navtracks, a tool that records the navigation history
of developers and better support browsing through software
[4]. Kersten et al. developed Mylar [1], which monitors the
programmer’s activity and extracts a degree-of-interest (DOI)
model associated to each program element. They later use this
model to infer the task context of program elements spread

1See http://www.eclipse.org

across a codebase. Yoon et al. proposed Fluorite, a low-
level event logging for the Eclipse IDE [5]. The tool records
interactions in the code editor and it is aimed at evaluating
existing tools. Development sessions are a valuable asset
for program comprehension. Robbes and Lanza proposed an
approach to record semantic changes in real time, implemented
in a tool called SpyWare [6]. The authors used the collected
data to understand and characterize the development sessions
to enhance program comprehension. DFlow di↵ers from the
related work, by focusing on the GUI-level events and by
proposing novel ways to visualize this type of information.
With SpyWare we share the goal of wanting to understand and
characterize development sessions. Fluorite, Navtracks, and
Mylar record di↵erent kinds of IDE interactions and provide
links to related entities but, for example, they do not provide
means to visualize or comprehend a development session.

We describe DFlow, detail the custom visualization we
devised, and illustrate them through scenarios.

II. DFlow

DFlow is composed of DFlow-Pharo, an extension to
the Pharo2 Smalltalk IDE, and DFlow-Web, a web-based
visualization platform. Figure 1 illustrates DFlow-Pharo (next
to standard Pharo windows (1)), featuring a session manager
(2) and a session browser (3).

1

2 3

Fig. 1: The main window of the Pharo IDE with DFlow.

The manager allows the user to start, pause, resume, and stop
development sessions. The browser provides means to inspect
the recorded sessions and to perform a number of operations
on them (e.g., export, rename, delete, merge).

2See http://www.pharo-project.org/



4

2
3

1-a
1

1-b

1-c

4-a

Fig. 2: DFlow-Web, composed of (1) a Navigation Bar, (2) a Session Log, (3) a Timeline, and (4) the Visualization Canvas.

Figure 2 shows DFlow-Web, the front-end of DFlow,
implemented as a web application. It is composed of:

1) Navigation Bar to configure the visualization and browse
information.

a) Select Session Menu to let the user to select the session
she wants to analyze.

b) Session Information Panel to provide additional pieces
of information about the session.

c) Replay Menu to step into the session (i.e., start & stop)
and to configure the speed of the animations.

2) Session Log to show a time-ordered textual description
of each event that happened during a session.

3) Timeline to represent the events happening in a session
divided according to their category: handling, navigating,
inspecting, and editing.

4) Visualization Canvas for the interactive visualizations.
a) Entity Information Panel to reveal additional pieces of

information about the hovered entity.

A. Visualizing a Development Session
We devised a custom visualization to depict a development

session. Figure 3 shows the principles behind the view and the
color mappings we use for the entities. We depict a development
session using a directed graph in which nodes are the entities
involved in the current session (classes, methods, attributes).
The directed links (i.e., source destination) depict
“navigation-paths” and not structural relations.

Principles and proportions. Nodes are either classes,
methods, attributes, or session handling events (e.g., start, pause,
stop, resume). The radius of a node is proportional to the
number of events on that entity in the sessions (i.e., how many
times the user interacted, directly or indirectly, with this entity).
We divided events in three categories: navigating (i.e., green),
inspecting (i.e., yellow), and editing (i.e., red). Navigation
events are the less intrusive events (they do not modify the
entity) while editing events represent the “real” editing activities
(e.g., adding/modifying a method/class). Inspection events do
not modify the entity, but represent deeper forms of navigation
(e.g., inspecting the internals of an object). Class and method
nodes are depicted as pie charts presenting the event distribution
of that entity at a glance. Handling events are depicted in grey.
Links depict “navigation paths” between entities, e.g., if the
developers creates Class A and right after browses the Method
foo of Class B (i.e., B#>>foo) DFlow-Web draws a directed
link from Class A to B#>>foo.

The width of the link is proportional to the number of
occurrences of that navigation path in the session. We use the
color to present information about the age of the links. We
divided links in quartiles, according to their age. For the first
three quartiles (i.e., old links) we used three tones of gray with
increasing saturation, while for the last quartile (i.e., the most
recent links) we use a gradient from blue to red.

Class nodes and session handling nodes are positioned on
a horizontal line, whose x-coordinate represents the temporal



Time
State

Behavior

Classes & Handling

Methods

Attributes

Events (nodes & timeline)

Handling
Navigation
Editing
Inspecting
Attributes

Links (recency)

1st Quartile
2nd Quartile
3rd Quartile
4th Quartile

Fig. 3: Visualizing development sessions. The figure shows the principles behind the view and the color mappings used.

dimension of a session. Method nodes and attributes are not
mapped to that time scale, but they take the x-position of their
owner node (i.e., a class node), unless the owner node is not
part of the visualization. This visual cue helps one to perceive
to what extent a class has been touched during a session.

The bottom timeline presents an outline of the session, where
each rectangle is an event. The color of events follows the same
color scale of the pie-charts. The y-coordinate of each rectangle
represents one of the four categories of events (i.e., handling,
navigation, inspection, and editing). The x-coordinate of each
rectangle represents the timestamp of the event it depicts.

B. Interacting with DFlow-Web
DFlow-Web is interactive. The user can pan (i.e., drag &

drop) and zoom (i.e., mouse wheel) the view inside the canvas
of DFlow-Web (Figure 2.4). The zoom performs an x-axis
rescale and restricts the time interval being displayed. This
helps to better understand the visualization at time steps where
events have a high density. The user can also drag & drop
single nodes to better understand links between the nodes. The
“Replay menu” (Figure 2.1-c) o↵ers additional means to interact
with the view. DFlow records all the time steps of a session,
and DFlow-Web is able to produce an animation of the session
where the view evolves together with the session. Figure 4
shows three time steps from the evolution of a session.

t1 t2 t3

Fig. 4: Three time steps of the same session.

C. Under the Hood
DFlow-Pharo contains a suite of profilers which seamlessly

observes and records all the IDE interactions of the developers.
The profilers produce a large amount of raw data which, in
addition to some meta data, compose a “development session”.
Another component, the session analyzer, receives the data,
mines them, and produces a JSON representation of each session.
The front-end, DFlow-Web, receives such JSON files, constructs
the visualizations, and lets the user interact with them.

D. The Corpus
DFlow features 20 recorded development sessions, summa-

rized in Table I. Most of the sessions were recorded by the
first author of this paper while developing DFlow itself, while
sessions 16 and 18 are courtesy of Mr. Andrei Chiş, a Ph.D.
student from the University of Bern.

Duration Events

No. Type (d:hh:mm:ss) Navigation Inspection Editing Total

1 General 0:00:01:04 10 4 3 21
2 General 0:00:02:17 30 2 16 52
3 Bug-fixing 0:00:02:52 22 1 0 27
4 Enhancement 0:00:05:13 42 0 2 46
5 Bug-fixing 0:00:05:19 20 0 1 23
6 Enhancement 0:00:06:46 47 2 5 56
7 Enhancement 0:00:09:57 58 5 15 82
8 Enhancement 0:00:17:23 131 4 26 165
9 Enhancement 0:00:21:35 223 0 32 257

10 Enhancement 0:00:27:39 101 14 24 141
11 Refactoring 0:00:35:15 211 1 92 308
12 Enhancement 0:03:26:21 457 126 54 651
13 Bug-fixing 0:06:34:43 319 25 34 386
14 Enhancement 0:06:40:55 385 88 63 544
15 Refactoring 0:20:59:00 896 26 183 1115
16 General 0:23:30:48 1200 135 113 1454
17 Bug-fixing 1:00:41:59 160 9 14 187
18 General 0:01:48:42 466 92 52 612
19 Enhancement 2:18:32:36 58 0 10 70
20 Enhancement 3:16:39:23 823 80 142 1081

TABLE I: The current corpus available to DFlow.



III. Telling Development Stories with DFlow

We used DFlow-Web to analyze the corpus sessions
presented in Section II-D. We describe some insights and
reflections by means of two scenarios.

A. Scenario 1: High Navigation Stacks & Back-Links.

Figure 5 shows part of an “enhancement session” recorded
during the development of DFlow itself. There are 3 main
stacks of events highlighted in the Figure. Stacks A and
B refer to user-defined classes, DFSessionAnalyzer and
DFJSONTouchedEntityNode. Stack C is a chain of navigation
events involving the String class and its methods. High
navigation stacks denote that the developer is browsing the
API of some class to find a specific piece of functionality.

A

B
C

Fig. 5: DFlow depicting a fraction of the session No. 20.

Figure 6 shows a later fraction of the same session.

Back-link B

Back-link A

Fig. 6: DFlow depicting time step t2 of the session No. 20.

In the figure we marked two special links, A and B. These are
“back-links”, where the developer, after repeatedly browsing
some other class, has gathered enough knowledge to “go back”
to another entity and finally perform an informed modification.

B. Scenario 2: Di↵erent Type, Di↵erent Shape.
Figure 7 shows a “bug-fixing session”.

Editing event

Entity A

Fig. 7: DFlow depicting the session No. 5.

From both the bottom timeline, and the visualization, we
see that this session features a series of navigation events (i.e.,
green) and one single editing (i.e., red). This denotes the fact
that the user has been navigating code to gather information
about the system to fix one specific entity, marked as A.

IV. Conclusion
We presented a novel approach to visualize the workflow

of developers, implemented in DFlow. DFlow seamlessly
records all the IDE interactions, and enables retrospective
analyses through interactive web-based visualizations. This is
still work at an early stage. In the future we plan to have
developers use our tool to enlarge our data set, with the goal
of collecting further insights and refining what seems to be
an emergent pattern language of session types. Further plans
include reflecting on which navigation events are performed in
which sequence, and whether we could use that information to
suggest to developers other ways of using the functionalities
o↵ered by the IDE.

Acknowledgements. We gratefully acknowledge the Swiss
National Science foundation’s support for the project “HI-SEA”
(SNF Project No. 146734).

References
[1] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for

IDEs,” in Proceedings of the 4th Int’l Conference on Aspect-Oriented
Software Development (AOSD), 2005, pp. 159–168.

[2] Y. Y. Lee, N. Chen, and R. E. Johnson, “Drag-and-drop refactoring:
intuitive and e�cient program transformation,” in Proceedings of the 35th

Int’l Conference on Software Engineering (ICSE), 2013, pp. 23–32.

[3] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in IDEs,” in Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE), 2009, pp. 237–246.

[4] J. Singer, R. Elves, and M. Storey, “Navtracks: supporting navigation in
software maintenance,” in Proceedings of the 21st IEEE Int’l Conference
on Software Maintenance (ICSM), 2005, pp. 325–334.

[5] Y. Yoon and B. A. Myers, “Capturing and analyzing low-level events
from the code editor,” in Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and Tools
(PLATEAU), 2011, pp. 25–30.

[6] R. Robbes and M. Lanza, “Characterizing and understanding development
sessions,” in Proceedings of the 15th IEEE Int’l Conference on Program
Comprehension (ICPC), 2007, pp. 155–166.


