
UrbanIt: Visualizing Repositories Everywhere
Andrea Ciani, Roberto Minelli, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics — Università della Svizzera italiana (USI), Switzerland

Abstract—Software evolution is supported by a variety of tools
that help developers understand the structure of a software
system, analyze its history and support specific classes of analyses.
However, the increasingly distributed nature of software devel-
opment requires basic repository analyses to be always available
to developers, even when they cannot access their workstation
with full-fledged applications and command-line tools.

We present URBANIT, a gesture-based tablet application for
the iPad that supports the visualization of software repositories
together with useful evolutionary analyses (e.g., version diff) and
basic sharing features in a portable and mobile setting. URBANIT
is paired with a web application that manages synchronization
of multiple repositories.

Website URL: http://urbanit.inf.usi.ch
App Store URL: http://appstore.com/urbanit

I. INTRODUCTION

Tools are fundamental to support many software engineering
activities. The approaches that support analysis of software
repositories, and in particular the ones that support the un-
derstanding of their evolution, are no exception. For example,
research has shown the benefits of 3D visualization of the
structure of a software system to support development and
maintenance tasks [1]. Most tools available to developers are
desktop applications and command line utilities that require
access to full-fledged workstations to be effective. The in-
creasingly distributed and collaborative nature of software
development [2], instead, requires that basic analyses are
available to developers on the go, without forcing them to
sit in front of a full-fledged computer.

We argue that this availability need can be supported by
touch-based tablet computers, which provide a good trade-
off between portability and effectiveness for visualization of
complex repositories. In fact, such devices provide a dedicated
gesture-based user interface, which enables novel and powerful
exploration and interaction capabilities. More importantly,
such capabilities could be leveraged to better support specific
scenarios in agile working teams, like discussions between
developers, or interaction with consultants.

We present URBANIT, a dedicated iPad1 application that
supports the visualization of software repositories in a mo-
bile and portable setting. URBANIT provides the following
contributions and supports the following features: i) the
synchronization with public Git2 repositories through a web
application; ii) a visualization, based on the city metaphor, to
display the status of a repository, supporting both code and
non-code files; iii) basic version diff visualization that can be
easily shared with other developers.

1See http://www.apple.com/ipad/
2See https://git-scm.com

II. URBANIT IN A NUTSHELL

URBANIT is implemented as an iPad application paired
with a web application whose role is to manage users and
do the pre-processing of the repositories to be analyzed. At
the moment, URBANIT supports public Git repositories (e.g.,
the ones that can be cloned without authentication at Github3).

Figure 1 shows the main user interface of the URBANIT
app, visualizing a snapshot of a project, i.e., a commit.

Fig. 1. The Main View of URBANIT, showing a snapshot of a project

URBANIT adopts the city metaphor [1], [3] to visualize the
logical structure of a software repository for a particular com-
mit. Each directory, starting from the root of the repository,
is represented as a district. Districts can be contained in each
other, as directories. Each file in a directory is represented
as a building in the corresponding district. The view uses
rectangle-packing for laying out districts and buildings. The
height of the “buildings” is proportional to the physical size
of the corresponding file (in kilobytes). Each building is also
colored depending on the corresponding file type (derived
from its extension). The user interface of URBANIT allows to
explore the structure of a repository in a given commit with
typical gesture-based interactions, i.e., moving by panning
and zooming by pinching. On the upper part of the view, a
toolbar provides basic functionalities to change the selected
software repository, search for specific files, and to filter the
visualization to specific file types. On the bottom part of
the view, a timeline enables the exploration of the repository
history, i.e., it can be used to visualize a specific commit,
starting from the oldest to the newest.

3See http://github.com



III. FEATURES AND USAGE SCENARIOS

Repository Subscription. After registering at the website4,
the user can add a set of public Git repositories. They are
cloned and processed server-side, and the user receives a
push notification when they are ready to be visualized in the
app. When she opens URBANIT, the app displays the list of
available repositories. She can choose which ones to download
and save on the iPad, which ones to delete, or select one to
visualize and analyze, as shown in Figure 2.

Fig. 2. Repository List

Filtering. In the main view of URBANIT, the user can select
the types of files she wants to focus on and filter out the others.
The filtered files are displayed with translucent colors, i.e.,
almost transparent. For example, in Figure 3, the developer
chose to focus only on code artifacts that are present in the
repository, selecting just the files with .scala extension (i.e.,
colored in red) and .java extension (i.e., colored in mustard).

Fig. 3. File type filtering

Selection. The user can select one or more files and obtain
additional details by “long-tapping” (i.e., tap and hold) on
the selection. URBANIT also visualizes a brief overview of
the evolution of the total size of the selected files.

4See http://urbanit.inf.usi.ch

Figure 4 shows a relatively big Scala source file, called
DataSetLoader.scala, with a long history and that went
through two major refactorings/modifications that reduced its
size, before becoming stable and unmodified.

Fig. 4. File Selection and Details

Diff View. The user can open a diff view to understand
how the repository changed between two versions (Figure 5).
On the left hand side, the user can select two versions (i.e.,
From and To), which are then portrayed on the right part
of Figure 5. The visualization depicts which entities changed
between the two versions: Files (or directories) that have been
removed are colored in red on the upper view (representing the
older version, i.e., From), while files that have been added are
colored in green in the bottom view (representing the newer
version, i.e., To). All modified files are colored in blue.

Figure 5 shows a diff view for two versions in the repository,
before and after a relatively major series of commits. The
developer can spot a major group of files that likely have been
moved. Such files are depicted in red in the upper part of the
view, i.e., they have been removed from a location in the older
version, and added in a new location in the newer version,
which can be spotted as a green contiguous group of files in
the lower view. Moreover, two directories have been created,
and a group of files (depicted in blue) have been modified.

Fig. 5. Diff view for a Major Refactoring



Communication. The diff view can be easily shared with
other developers with a dedicated button located on the lower
right side of the diff view. URBANIT is able to generate a
simple mail report that contains the list of added, removed
and modified files for the selected pair of commits and the
corresponding views as generated by the app. Without exiting
the app, the developer can add recipients to the mail, add other
useful information and send it (see Figure 6).

Fig. 6. Sharing the Diff View

IV. RELATED WORK

Researchers in software engineering proposed visualizations
for many aspects of software systems, including the static
structure [4] and of the evolution of repositories, like in the
case of CVSScan [5]. Similarly, Riva et al. proposed an
approach to analyze the stability of the architecture [6] by
using colors to depict the changes over a period of releases.
Rysselberghe and Demeyer proposed a simple visualization
of the evolution of software systems based on information in
version control repositories [7]. Similarly, Taylor and Munro
[8] proposed revision towers to visualize CVS data.

Pioneering work on 3D visualization was proposed by Reiss
[9]. Since then, many 3D approaches have been proposed, like
Knight et al.’s Software World [10], use a city metaphor, while
Marcus et al.’s sv3d [11] use a similar 3D metaphor to visual-
ize single versions of software systems. Langelier et al.’s Verso
[12] used 3D visualizations to display structural information,
representing classes as boxes with metrics mapped on height,
color and twist, and packages as borders around classes.

V. CONCLUSION

We presented URBANIT, an iPad application paired with a
web application that provides basic but effective mechanisms
to visualize and navigate Git repositories using the city
metaphor, providing basic analyses like changing the visual-
ized version and exploring the repository evolution, checking
the evolution of a selected file, and comparing two selected
versions and sharing the diff view. URBANIT is an attempt
to port software visualization and basic evolution analyses
in a portable and frequently available environment, that we
believe would be effective especially in the context of highly
distributed and collaborative environments.

A. Limitations and Future Work

One of the main limitations of URBANIT is the ability to
work only on public Git repositories (i.e., repositories that do
not require authentication to be cloned). At the actual state,
URBANIT does not support branches in Git and analyzes only
the main branch. We also plan to support more and diverse
version control systems, like Subversion5 and Mercurial6, and
provide automatic notifications for repository changes.

URBANIT is not tied to source code files, instead it visual-
izes any kind of data inside repositories. As part of our future
work we will investigate how to conveniently analyze the evo-
lution of different categories of repositories, e.g., a repository
containing the set of files composing a scientific paper (i.e.,
LATEX files and images). This includes the development of
novel evolutionary or diff views to better present particular
types of data, e.g., text files.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “HI-SEA”
(SNF Project No. 146734).

REFERENCES

[1] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proceedings of ICSE 2011 (33rd International
Conference on Software Engineeering). ACM, 2011, pp. 551–560.

[2] A. Sarma, G. Bortis, and A. van der Hoek, “Towards supporting
awareness of indirect conflicts across software configuration manage-
ment workspaces,” in Proceedings of ASE 2007 (22nd IEEE/ACM
International Conference on Automated Software Engineering), 2007,
pp. 94–103.

[3] R. Wettel and M. Lanza, “Program comprehension through software
habitability,” in Proceedings of ICPC 2007 (15th IEEE International
Conference on Program Comprehension), 2007, pp. 231–240.

[4] Telea, Maccari, and Riva, “An open visualization toolkit for reverse
architecting,” in Proceedings of IWPC 2002 (International Workshop on
Program Comprehension). IEEE CS, 2002, pp. 3–13.

[5] L. Voinea, A. Telea, and J. J. van Wijk, “CVSscan: visualization of
code evolution,” in Proceedings of Softviz 2005 (ACM Symposium on
Software Visualization), 2005, pp. 47–56.

[6] M. Jazayeri, H. Gall, and C. Riva, “Visualizing software release histo-
ries: The use of color and the third dimension,” in Proceedings of ICSM
1999 (16th IEEE International Conference of Software Maintenance).
IEEE CS Press, 1999, pp. 99–108.

[7] F. Van Rysselberghe and S. Demeyer, “Studying software evolution
information by visualizing the change history,” in Proceedings of ICSM
2004 (20th IEEE International Conference of Software Maintenance).
IEEE Computer Society Press, 2004, pp. 328–337.

[8] C. Taylor and M. Munro, “Revision towers,” in Proceedings of VISSOFT
2002 (1st International Workshop on Visualizing Software for Under-
standing and Analysis). IEEE Computer Society, 2002, pp. 43–50.

[9] S. P. Reiss, “An engine for the 3D visualization of program information,”
J. Vis. Lang. Comput., vol. 6, no. 3, pp. 299–323, 1995.

[10] C. Knight and M. C. Munro, “Virtual but visible software,” in Pro-
ceedings of IV 2000 (IEEE International Conference on Information
Visualization), 2000, pp. 198–205.

[11] A. Marcus, L. Feng, and J. I. Maletic, “3D representations for software
visualization,” in Proceedings of Softvis 2003 (ACM Symposium on
Software Visualization). IEEE, 2003, pp. 27–37.

[12] G. Langelier, H. A. Sahraoui, and P. Poulin, “Visualization-based
analysis of quality for large-scale software systems,” in Proceedings
of ASE 2005 (120th IEEE/ACM International Conference on Automated
Software Engineering). ACM, 2005, pp. 214–223.

5See https://subversion.apache.org
6See https://mercurial.selenic.com


