
Visualizing Data in Software Cities
Susanna Ardigò, Csaba Nagy, Roberto Minelli, Michele Lanza

REVEAL @ Software Institute — USI, Lugano, Switzerland

Abstract—The city metaphor for visualizing software systems
in 3D has been widely explored and it has led to many diverse
implementations and approaches. However, when looking at
software systems in general, and when using specifically a city
approach, it is evident that something is missing: The data.
Indeed, software systems are intrinsically driven by data, which
is usually managed using databases or often also simply stored
in files coming in a variety of formats, such as CSV, XML, and
JSON. While such data files are part of a project’s file system
and can thus be easily retrieved, the situation is different for
databases: A database is usually not contained in the file system,
and its presence can only be inferred from the source code which
contains the database accesses.

We present an extension of the CodeCity implementation,
M3TRICITY2, with two new contributions: First, we consider data
files and use simple metrics to integrate them in the visualization
seamlessly. Second, we present a novel way to add a database
to the visualization by making use of the one remaining space
left unused: the sky and the underground. We present our
contributions and illustrate them on various software systems.

Index Terms—Software visualization, Database access visual-
ization, Software maintenance, CodeCity

I. INTRODUCTION

The city metaphor has been widely explored to visualize
the structure and the evolution of software systems [1]–[9].
When looking at a software city, while we see its structure and
implementation, something is missing: The data. But Software
systems run on data. It intrinsically drives them, giving them a
“reason” to exist. If data is an integral part of software systems,
then it should be part of the city visualization.

Classic software visualization approaches consider systems
as files located in nested folders, above all because this is
the way their source code is stored and versioned. Data on
the other hand can originate from various sources. The most
straightforward approach is to manage data using data files,
which often come in various formats, such as XML and JSON.
Such files are usually versioned together with the source code.
A more systematic and scalable approach is for a system to
make use of databases. Relational databases (e.g., PostgreSQL,
MySQL, Oracle) have been widely used for decades, while
recently there has been an uptick in the use of NoSQL
databases (e.g., Neo4j, MongoDB). Databases are generally
not contained in a system’s repository, and as a result they
have so far remained largely outside the focus of visualization
approaches. Some researchers have developed approaches to
visualize databases together with software systems [10]–[13],
but no state-of-the-art method considers the system and its
various data sources as a whole, presented in one view where
they evolve together and interact with each other.

We present M3TRICITY2, an extension of M3TRICITY [14],
which seamlessly integrates various data sources of a system
into the visualization. First, we represent data files in the city
and map simple metrics on their meshes (i.e., their shapes
rendered in the visualization). Second, we add the database
to the visualization using the free space of the sky above or
the underground below the city. We infer the schema of an
application’s database using SQLInspect [15], a static analyzer
to inspect database usage in Java applications. We calculate
metrics of the database entities, such as the number of columns
of tables or the number of classes accessing them. Finally, we
present the system with its data sources using the history-
resistant layout of M3TRICITY, i.e., the new entities remain
at their reserved place throughout the evolution. The resulting
view seamlessly integrates data sources to a software city and
enables a more comprehensive understanding of a system in
terms of its source code and its data.

M3TRICITY2 is a web application available at https://
metricity.si.usi.ch/v2.

II. RELATED WORK

Since the seminal works of Reiss [1] and Young & Munro
[2], many studied 3D approaches to visualize software sys-
tems. The software as cities metaphor has been widely ex-
plored and led to diverse implementations, such as the Soft-
ware World approach by Knight et al. [3], the visualization of
communicating architectures by Panas et al. [4], [16], Verso by
Langelier et al. [5], CodeCity by Wettel et al. [6], [17], EVO-
STREETS by Steinbrückner & Lewerentz [7], CodeMetropolis
by Balogh & Beszedes [8], and VR City by Vincur et al. [9].

Only a few approaches considered presenting the databases
together with the source code, and interestingly, most use
the city metaphor. Meurice and Cleve presented DAHLIA to
visualize database schema evolution [10], which uses the city
metaphor where buildings in the city represent database tables.
DAHLIA 2.0 presented the city of the source code and the
database side-by-side [11]. Zirkelbach and Hasselbring pre-
sented RACCOON [12], a visualization approach of database
behavior, which uses the 3D city metaphor to show the struc-
ture of a database based on the concepts of entity-relationship
diagrams. Marinescu presented for enterprise systems a meta-
model containing object-oriented entities, relational entities
and object-relational interactions [13], stating that “to perform
reverse engineering on enterprise software systems we need
a specific meta-model which contains [...] entities from the
object-oriented part and [...] entities regarding the relational
part [...] and the interactions between the two paradigms.”

Database with Table-Cylinders

Code-Buildings

DataFile-Cylinder

Binary-Hemispheres

Fig. 1. The Main Page of M3TRICITY2

Repository

ClassHistory DataFileHistory BinaryHistory PackageHistory RepositoryHistory DatabaseHistory TableHistory

ClassVersion DataFileVersion BinaryVersion TableVersionPackageVersion RepositoryVersion DatabaseVersion TableAccess

belongsToPackage
0..* 0..* 0..* 1

hasVersion hasVersion hasVersion hasVersion hasVersion hasVersion hasVersion

belongsToPackage belongsToPackage
accessesClass

belongsToRepository belongsToDB accessesTable
1 0..*

hasClass hasDataFile hasBinary hasPackage hasSnapshot hasDatabase hasTable hasTableAccess

1 0..* 1 0..* 0..*1

1 1 1 1 1 1 1

1

1..* 1..*0..* 0..* 1..* 0..* 0..*

0..*1..* 1..* 1..* 1..* 1..* 1..* 1..*

belongsToRepository
1..*

Fig. 2. Evolution Model of M3TRICITY2

III. VISUALIZING DATA IN SOFTWARE CITIES

The goal of M3TRICITY2 is to represent a software system
and its data sources (i.e., data files and databases), while
differentiating the two parts in the visualization. M3TRICITY2
builds on M3TRICITY [14], to which we refer for details on
the history-resistant layout.

Figure 1 shows a screenshot of M3TRICITY2 visualized
in M3TRICITY2. The software city visualization is in the
center with the database as a cloud above the city. Information
panels present the name of the repository (top left), the metrics
of the system (top right), the actual commit (bottom left),
and its commit message (bottom right). The timeline at the
bottom depicts the evolution of the project where one can
spot significant changes in the metrics. The evolution can be
controlled with the buttons below the city.

We illustrate the model of M3TRICITY2 and discuss how
to analyze and visualize the data in software cities.

A. Evolution Model with Data Entities

M3TRICITY2 extends the evolution model of M3TRICITY
with entities representing data sources. The underlying model
is depicted in Figure 2. The purpose of M3TRICITY was
to keep the visualization resistant to changes throughout the
evolution. Accordingly, the model keeps track of the histories
of each version of the entities.

In M3TRICITY a Repository is composed of Packages and
Classes. M3TRICITY2 adds Databases and Tables to the
model. Additionally, TableAccess association classes represent
when Classes access Tables to query or modify data in the
database. We also add an entity for DataFiles, i.e., files
in the repository to store data (e.g., XML or JSON files).
Finally, we add a Binary entity to distinguish other non-source
files in the repository (e.g., images). In Figure 2, a database
icon highlights the new parts of the model.

B. Analysis of Data in Software Cities

The top part of Figure 3 summarizes the process in place
when the user asks for the analysis of a system.

Back End

Layout Constructor

City Creator

Database Helper

Front End

/history/start

Database

load

{meshes […], …}

Back End

Repository
Downloader

Commit Analyzer

History Linker
SQLInspect

Source files

clone

analyze

getTableAccesses

getMetrics

clone

getDBSchema

Front End

/analyze

Database

persist

R
ep

os
ito

ry
 A

na
ly

si
s

C
ity

 V
is

ua
liz

at
io

n

Fig. 3. Repository Analysis and City Visualization processes

The analysis starts after the user has provided the URL of a
Git repository. The key components taking part in the analysis
are the Repository Downloader, Commit Analyzer, and History
Linker. The Repository Downloader clones the project and the
Commit Analyzer starts analyzing each commit.

M3TRICITY collected metrics of the source files.
M3TRICITY2 introduces new Commit Analyzer steps to
identify the data files and extract their metrics. It runs
SQLINSPECT, a static analyzer that inspects database usage
in Java applications [15]. SQLINSPECT extracts the SQL
queries embedded in the classes and returns an inferred
schema of the application with a list of table accesses.
It supports relational databases (i.e., MySQL, SQLite,
Apache Impala) used in JDBC applications, Android apps,
and applications using Spring or Hibernate frameworks.
SQLINSPECT was also extended to infer the database schema
of applications using MongoDB. The Commit Analyzer
processes the output files of SQLINSPECT and calculates
related metrics to update the actual model of the system.

The metrics collected for data files are the following:
Number of Entities represents the total number of entities (e.g.,
XML elements or JSON objects) in the file; Number of Entity
Types; Maximum Number of Properties per Entity describes
the number of properties of the largest entity type; Maximum
Nesting Level describes the maximum depth of the sub-entities.
We collect the Number of Columns and the Number of Table
Accesses for database tables.

The History Linker traverses the entities and creates History
entities to represent multiple versions of the same entity over
the evolution. For example, when a DataFile (e.g., an XML)
is moved or renamed, a single DataFileHistory will represent
the same file at different locations in multiple snapshots. In
the end, the constructed model is persisted in a database.

C. Visualization of Data in Software Cities

The bottom of Figure 3 depicts the visualization process.
The Front End sends the request to the Back End, which re-
turns the meshes with their locations for the current snapshot.
The main components of M3TRICITY2 in this process are the
Layout Processor and the City Creator in the Back End, and
Canvas Creator and Mesh Renderer in the Front End.

M3TRICITY2 defines new meshes for the new entities (see
Figure 4). An orange datafile-cylinder represents a data file. A
binary file has a gray binary-hemisphere mesh, and a database
table is drawn as a red table-cylinder.

code-building datafile-cylinder binary-hemisphere table-cylinder

Fig. 4. The New Meshes of M3TRICITY2

The new meshes are placed in the city according to the
algorithm described in Pfahler et al. [14]. The layout leverages
the evolution model to create a history-resistant layout. A
recursive bin-packing algorithm places the individual elements
in the city, considering the entire history of the system. It
reserves areas for all elements and ensures that the same entity
remains at the same place throughout the evolution.

An interesting problem is the placement of the database
tables. Conceptually they are different than regular source files:
They are not part of the source code, per se. Database tables
are not version-controlled together with source files, either.
They are inferred, thus, they should not be likened to source
code. We separate the database tables by making use of the one
remaining space left unused: the Sky and the Underground.

Fig. 5. City with Clouds

Fig. 6. City with Underground

r3 (f038042) - 4 May 2020 r373 (6675702) - 30 Jul 2020 r725 (9c5f1c1) - 27 Apr 2021

1
3

4

2

Fig. 7. Visualizing the SwissCovid Android App with M3TRICITY2

In the City with Clouds visualization the file system is
positioned at the ground level, and the database is positioned
above the city so that the two are facing each other (see
Figure 5). In the City with Underground, the city is lifted,
giving space to the databases and tables represented below
(see Figure 6). In both layouts, edges connect the accessed
tables with the classes. To emphasize the inferred nature of
the tables, the database is rendered with light transparency,
giving it a ghostly appearance above/below the city.

IV. CASE STUDIES

A. SwissCovid Android App

Figure 7 presents the evolution of the official SwissCovid
Android App.1 Its Java back end does not use a local database
but has many resource files. It has around 8k and 4k lines of
code written in Java and Kotlin.

The repository was initialized with a commit of license and
readme files on April 15, 2020.2 In the third revision, on
May 4, 2020, they committed the ch.admin.bag.dp3t
package.3 The structure remains stable after this commit, but
the project is developed with regular changes, as seen in the
commits of July 304 and April 27, 2021.5

Its growth is easily observable during the evolution. The
timeline in Figure 7 shows regular contributions to data files.
Indeed, the XML files grow from an initial 10k to 25k lines.

Interesting districts can be spotted in the new layout with
the data files. The Java classes are primarily located on the
bottom-left side of the city 1©. One robust class 2© stands out:
SecureStorage.java – the encrypted implementation of
the android.content.SharedPreferences.6 This is
the primary storage implementation with a critical role in the
contact tracing app of Switzerland.

1See https://github.com/SwissCovid/swisscovid-app-android
2See https://github.com/SwissCovid/swisscovid-app-android/commit/98363d9
3See https://github.com/SwissCovid/swisscovid-app-android/commit/f038042
4See https://github.com/SwissCovid/swisscovid-app-android/commit/6675702
5See https://github.com/SwissCovid/swisscovid-app-android/commit/9c5f1c1
6See https://developer.android.com/reference/android/content/SharedPreferences

Above the district of the source files, we can see the
neighborhoods of resource files 3©. There are several tiny
PNG and SVG files and folders with smaller layout XMLs.
An interesting district is a folder with strings.xml files of
various languages 4©. The initial version supported only three
official Swiss languages (Italian, French and German). As the
app evolves, the XMLs grow, and the number of supported
languages increases to twelve.

B. GnuCash Android App

GnuCash Android7 is a companion app of the open-source
GnuCash accounting software. It has an SQLite database with
a central role in the project to store the transactions. Its
codebase is in Java with around 27k LOC. In addition, it has
XML files with about 22k lines.

Figure 8 depicts the evolution of GnuCash Android. The
project started with an “Initial commit” by “codinguser” on
May 13, 2012.8 The commit already contained source files 1©,
but no database yet, which was added two commits later, in
the commit “Created database store for accounts and trans-
actions” on May 24, 2012.9 The visualization confirms the
appearance of two tables: Transactions and Accounts.

On April 11, 2015, a refactoring took place in the project
and they also refactored the database schema (removed dep-
recated tables and code).10 This revision has four tables in the
database, and they are accessed only from a few classes 2©.
The biggest table, Accounts, has 14 columns and is modified
31 times throughout the evolution. It was initially added to
the project with only four columns. The DatabaseHelper
class handles the communication with the database 3©. The
other classes accessing the database are adapter classes:
AccountsDbAdapter and TransactionsDbAdapter.
M3TRICITY2 shows 11 tables throughout the evolution of the
project, with some tables introduced only temporarily.

7See https://github.com/codinguser/gnucash-android
8See https://github.com/codinguser/gnucash-android/commit/94a9c01
9See https://github.com/codinguser/gnucash-android/commit/34ce20d
10See https://github.com/codinguser/gnucash-android/commit/0fa9038

r1 (94a9c01) - 13 May 2012 r574 (cf11c16) - 14 Feb 2015 r1728 (2ad44ad) - 2 Dec 2020

1 3 3 4 5

2 2

Fig. 8. Visualizing GnuCash Android App with M3TRICITY2

The last commit of the project is from December 2,
2020.11 Districts of resources similar to the SwissCovid App
can be spotted easily. The larger XML files are again the
strings.xml files of the 35 languages of GnuCash An-
droid 4©. It is also interesting to observe some smaller and
wider XML files in one district 5©. These are Import*.xml
files in the test package: They store test data.

V. CONCLUSIONS & FUTURE WORK

M3TRICITY2 extends the city metaphor with a novel way
to add “data” to the visualization, making it an integral part
of the visualization. We implemented two views to separate
the database as an inferred element: City with Clouds and City
with Underground, and connected the data tables to the classes
accessing them. We added data files and used descriptive
shapes and colors to differentiate them from the buildings of
source classes. We demonstrated the approach on two systems,
one with small data files and one with a relational database.

There are limitations to the approach: It requires the
database schema, which is rarely accessible with the source
code. In case it is missing, schema inference can help. More-
over, schema-less NoSQL databases that allow unstructured
data might not be appropriately represented with our model,
which can affect the already non-trivial problem of linking
different versions of entities (e.g., detecting the renaming of a
document in a document store). Finally, as we demonstrated
the approach on a system with only one database, multiple
databases pose additional challenges. While conceptually the
model can handle them, questions arise about their positioning.
Seeking answers to these questions is part of our future work.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
Swiss National Science Foundation (SNF) and the Fonds
de la Recherche Scientifique (F.R.S.-FNRS) for the project
“INSTINCT” (SNF Project No. 190113).

11See https://github.com/codinguser/gnucash-android/commit/2ad44ad

REFERENCES

[1] S. P. Reiss, “An engine for the 3D visualization of program information,”
J. Visual Languages & Computing, vol. 6, no. 3, pp. 299–323, 1995.

[2] P. Young and M. Munro, “Visualising software in virtual reality,” Proc.
6th Int. Workshop on Program Comprehension, pp. 19–26, 1998.

[3] C. Knight and M. Munro, “Virtual but visible software,” in Proc. 17th
Int. Conf. Information Visualization. IEEE, 2000, pp. 198–205.

[4] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc,
“Communicating software architecture using a unified single-view vi-
sualization,” in Proc. 12th Int. Conf. Engineering Complex Computer
Systems. IEEE, 2007, pp. 217–228.

[5] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proc. 20th Int. Conf.
Automated Software Engineering. ACM, 2005, pp. 214–223.

[6] R. Wettel and M. Lanza, “Visualizing software systems as cities,” in
Proc. 4th Int. Workshop on Visualizing Software for Understanding and
Analysis. IEEE, 2007, pp. 92–99.

[7] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in Proc. 5th Int. Symposium on Software Visualiza-
tion. ACM, 2010, pp. 193–202.

[8] G. Balogh and A. Beszedes, “CodeMetropolis - code visualisation in
MineCraft,” in Proc. 13th Int. Working Conf. Source Code Analysis and
Manipulation. IEEE, 2013, pp. 136–141.

[9] J. Vincur, P. Navrat, and I. Polasek, “VR City: Software analysis
in virtual reality environment,” in Proc. Int. Conf. Software Quality,
Reliability and Security Companion. IEEE, July 2017, pp. 509–516.

[10] L. Meurice and A. Cleve, “DAHLIA: a visual analyzer of database
schema evolution,” in Proc. 2014 Software Evolution Week - IEEE
Conf. Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), 2014, pp. 464–468.

[11] ——, “DAHLIA 2.0: A visual analyzer of database usage in dynamic
and heterogeneous systems,” in Proc. 2016 Working Conf. Software
Visualization (VISSOFT). IEEE, 2016, pp. 76–80.

[12] C. Zirkelbach and W. Hasselbring, “Live visualization of database
behavior for large software landscapes: The RACCOON approach,”
Department of Computer Science, Kiel University, Tech. Rep., 2019.

[13] C. Marinescu, “Applications of automated model’s extraction in enter-
prise systems,” in Proc. 14th Int. Conf. Software Technologies (ICSOFT
2019). SCITEPRESS, 2019, pp. 254–261.

[14] F. Pfahler, R. Minelli, C. Nagy, and M. Lanza, “Visualizing evolving
software cities,” in Proc. 2020 Working Conf. Software Visualization
(VISSOFT). IEEE, 2020, pp. 22–26.

[15] C. Nagy and A. Cleve, “SQLInspect: A static analyzer to inspect
database usage in java applications,” in Proc. IEEE/ACM 40th Int. Conf.
Software Engineering: Companion (ICSE 2018), 2018, pp. 93–96.

[16] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software pro-
duction visualization,” in Proc. 7th Int. Conf. Information Visualization.
IEEE, 2003, pp. 314 – 319.

[17] R. Wettel and M. Lanza, “CodeCity: 3D visualization of large-scale
software,” in Comp. 30th Int. Conf. Software Engineering (ICSE 2008).
ACM, 2008, p. 921–922.

