Universita Faculty
della of Informatics
Svizzera

italiana Bachelor TheSiS

June 21, 2017

Parsing & Modeling Swift Systems

Alessio Buratti

Abstract

Swift is an emerging programming language, mainly used to develop applications for Apple devices. It is widely
used and its popularity is still increasing.

We developed PMSS, a toolkit, written in Swift, that parses Swift applications and exports a model of their
source code according to the FAMIX meta-modeling standard. These models can be analyzed using our i0S/macOS
application or Moose, a language-independent platform for software and data analysis.

Advisor

Prof. Michele Lanza
Assistant

Roberto Minelli

Advisor’s approval (Prof. Michele Lanza): Date:

Contents

|13 Swift and the meta-modeling tools in a nutshell|
[3.1 The Swift Programming Language|. it it i e e e
[3.1.1 Some “Swifty”’ code examples| L
[3.2 FAMIX: a language independent meta-modell
[3.3 MOOSE: a platform for software and data analysis|

|4 PMSS: Parsing & Modeling Swift Systems|
[4.1 SourceKit: the core of Swift’s source code manipulation|
[4.2 SourceKitten: high-level SourceKit interaction|

|5 PMSS Model Visualizer: Our iOS and macOS Cocoa applications|
.1 10 . . e e e e e e

[5.3 SceneKit: a high-level 3D graphics framework|,
[5.4 ARKit: augmented reality experience in any 10S application|. oL L.

14
14
14
15
16

17

1 Introduction

1.1 Goal

Software systems are constantly changing, old modules and components are being deprecated and replaced by more
modern ones while new features are implemented and the existing ones are optimized.[[7] Code maintenance is a
complicated task, to be done, a deep knowledge and understanding of the system is necessary.[|]]

Reverse engineering is the process of analyze existing software systems and understand them.[3]] Different tools
can help the engineers to achieve this result. The Parsing & Modeling Swift Systems (PMSS) toolkit provides to
Swift and Cocoa developers a way to easily get a language independent representation of a system using the FAMIX
metamodel structure.

1.2 Motivation

Swift is an open source languageﬂ that can be used to develop any kind of project, starting from simple scripts and
command line tools to more complicated apps and web-app, in both the Apple and the Linuxﬂ environment. The
main reason that brought us to work on this project is to give to developers the possibility to easily model their system
using either a stand-alone and native command line tool or a web service.

2 State Of The Art

There are several modeling tools already used by software engineerings.

An example is jdt2fami>¢ﬂ an open source project that offers the mechanism for producing MSE files out of Java
code. It is based on JDT Core and Fame for Java, and it requires Java 8. jdt2famix is written in Java and, like the
tool that we developed, it is implemented as a standalone project.

Moose Brewer and Penumbra are two Java’s modeling tools. Brewer is an Eclipse plugin to generate MSE file
from an Eclipse project. Penumbra is a Visualworks application that makes the Eclipse application steerable within
Smalltalk.[12]]

Another example is Parsing & Modeling C# System (PMCS)[3]], developed by Ermira Daka as Master Project.
PMCS is written in C# and, as well jdt2famix, it is a standalone tool that generates MSE files representing a given
software system.

2.1 Related work

This work was inspired by CodeCity, an integrated environment for software analysis.[[7]] In CodeCity software systems
are visualized using the metaphor of the city, classes are represented as buildings and packages are represented as
districts. The buildings reside in their specific district and, by the size, the height, and the color of the building, it is
possible to understand the number of attributes, methods and line of code of each class.

Isee: https://developer.apple.com/swift/blog/?id=34
2see: https://swift.org/blog/swiftlinuxport/
3see: https://github.com/girba/jdt2famix

Figure 1. CodeCity visualization of JDK v1.5

3 Swift and the meta-modeling tools in a nutshell

In this section we provide an overview of the concepts needed to better understand the contents of this document,
what we developed, and how.

3.1 The Swift Programming Language

Swift is a general-purpose programming language built using a modern approach to safety, performance, and software
design patternsEI Designed by Chris Lattner and Apple IncEl it was first announced at the 2014 Worldwide Developer
Conference (WWDC14)

Swift supports multiple paradigms, like imperative, object-oriented, functional, generic, event-driven and con-
current programming.

3.1.1 Some “Swifty” code examples

Swift supports all the standard features of an object-oriented programming language. It is possible to assign a value
to a constant or a to variable as follows

"Hello"
10

1 var someVariable
2 let someConstant

And a function can be defined as follows

1 func sayHello(to person: Person) {
2 print("Hello \(person.name)")

s}

In Swift you can decide to describe an object as a class or as a struct depending on your needs. Swift classes
support all the classic object-oriented features like inheritance, polymorphism and encapsulation. As it happens for
most of the object-oriented languages, class’ instances are allocated in the dynamic memory.

“4see: https://swift.org/about/
Ssee: http://nondot.org/sabre/
6see: https://developer.apple.com/swift/blog/?id=34

Swift structs, on the other hand, are value types, therefore they are allocated on the stack and do not support
inheritance, but differently from most languages, they do have methods and they do support polymorphism if they
conform to some protocols.

Swift protocols can be seen like Java’s interfaces but differently from interfaces a method can have a default
implementation. To be more specific, in Swift, a protocol defines a blueprint of methods, properties, and other
requirements that suit a particular task or piece of functionality. The protocol can then be adopted by a class,
structure, or enumeration to provide an actual implementation of those requirements. Any type that satisfies the
requirements of a protocol is said to conform to that protocol. [[1]]

1 // A simple class in Swift
2 class Dog: Animal {

3 let name: String

4

5 init(name: String) {
6 self.name = name
7 }

s}

Listing 1

1 // A protocol that describes which methods
2 // a class, struct or enum should have in
s // order to be seen as a Drivable entity.
4+ protocol Drivable {

5 func drive(to location: Location)

s // Two structs, both conforming to Drivable
o struct Car: Drivable {

10 let engine: Engine

11

12 // Required by Drivable

13 func drive(to location: Location) {
14

15 }

16 }

17

18 Sstruct Horse: Drivable {

19 let name: String

20

21 // Required by Drivable

2 func drive(to location: Location) {
23

24 }

25 }

26

27 let drivables: [Drivable] = [Car(engine: Engine()), Horse(name: "Spirit")]
22 for drivable in drivables {

29 drivable.drive(to: (latitude: 0.00000, longitude: 0.00000))

0}

Listing 2

Like most of the modern languages, Swift supports the functional programming paradigm. Using enums and
indirect enums you can describe data types like you would to in Haskell or Scala.

1 indirect enum Tree<Element> {

2 case empty

3 case node(Tree, Element, Tree)
4+ 1

5

s enum SomeValue {

7 case intValue(Int)

8 case boolValue(Bool)

s }

Swift supports extension to existing types and has a powerful pattern matching.

1 extension Tree {

2 var elements: [Element] {

3 switch self {

4 case .empty:

5 return []

6 case let .node(leftChild, element, rightChild):
7 return leftChild.elements + [element] + rightChild.elements
8 }

9 }

10 }

11

12 extension SomeValue: CustomStringConvertible {

13 var description: String {

14 switch self {

15 case let .intValue(value): return "\(value)"

16 case let .boolValue(value): return "\(value)"
17 }

18 }

19 }

20

z1 let someValue = 42

22

23 switch someValue {

24 case 0..<10: print("someValue is between 0 and 10")
s case 10...: print("someValue is biggern then 10")
26 case ..<0: print("someValue is negative")

27 default: break

28 }

After this introduction to the language we will see how Swift can be modeled and the tools that we used.

3.2 FAMIX: a language independent meta-model

FAMIX is a language independent meta-model that can represent in a uniform way multiple object-oriented and
procedural languages. More generally, FAMIX describes a set of rules that can be used to represent a software
system independently from the programming language in which the system is written. FAMIX stands for FAMOOS
Information Exchange Model. The FAMIX core, synthesized in Figure |2} describes the main entities that take part
in a object-oriented software system and the relations between these entities. The main entities are Package, Class,
Method, Attribute, and the relationships between them, are Inheritance, Access and Invocation.[4]]

A Package is an entity that can encapsulated other packages and classes. A Class is a set of methods and
attributes and the Inheritance relation is used to indicate which class subclass another one. A Method is defined as
an action that can be executed by a Class and the Invocation relation indicates how methods invoke other ones.
An Attribute is defined as a Class’ property and the Access relation indicates which methods access each attribute.

packagedin <;1

0.
Package childPackages

1 packagedIn

0..*
superclass belongsTo
é Class]
subolass 1 1< belongsTo
0.
0.* 0.*
InheritanceDefinition invokedBy 1:
Method Attribute
candidates
accessedin 1 | accesses
0.* 0.*
Invocation Access

Figure 2. The core of the FAMIX meta-model

3.3 MOOSE: a platform for software and data analysis

MOOSE is an extensible, language-independent, environment for reengineering object-oriented systems [[5]] devel-
oped at the University of Bern.

S M

|class Tinemachine { | (FAMIX.Class (id: 3)
func travel(backTo time: Date) { (name 'TimeMachine')

(FAMIX.Method (id: 4)
¥ (name 'travel')

¥ (parentType (ref: 3))

class PhoneBox {

let constructionDate = Date() (signature 'travel(backTo:)")

(sourceAnchor (ref: 2)))

class PhoneBox class TimeMachine

Figure 3. On the left, an example of Swift source code, in the middle a piece of the FAMIX meta-model describing that source
code, on the right the corresponging of rendered city

As you can see in Figure[3] MOOSE stands between a specific programming language and a set of different reverse
engineering tools. MOOSE is a platform used to analyze system complexity and class hierarchies, classes and their
internal complexity, package usage and system distribution in abstract space. At the same time MOOSE is also a
visualization platform and offers the possibility to visualize software systems using powerful tools like Mondrian and
CodeCity. [3]]

MSE is the default file format supported by Moose. It is a generic file format and can describe any model. It is
similar to XML, the main difference being that instead of using verbose tags, it makes use of parentheses to denote
the beginning and ending of an element. |Z|

The snippet [3] provides an example of a small model:

7see: http://themoosebook.org/book/index.html

1 ((FAMIX.Namespace (id: 1)

2 (name 'aNamespace’))

3 (FAMIX.Package (id: 201)
4 (name ’'aPackage’))

5 (FAMIX.Package (id: 202)
6 (name ’anotherPackage’)

7 (parentPackage (ref: 201)))
8 (FAMIX.Class (id: 2)

9 (name ’'ClassA’)

10 (container (ref: 1))

11 (parentPackage (ref: 201)))
12 (FAMIX.Method

13 (name 'methodAl’)

14 (signature ’'methodAl()’)
15 (parentType (ref: 2))

16 (LoC 2))

17 (FAMIX.Attribute

18 (name 'attributeAl’)

19 (parentType (ref: 2)))

20 (FAMIX.Class (id: 3)

21 (name 'ClassB’)

22 (container (ref: 1))

23 (parentPackage (ref: 202)))
24 (FAMIX.Inheritance

25 (subclass (ref: 3))

26 (superclass (ref: 2))))

Listing 3. Example of a model according to the FAMIX standard.

The main goal of our project is to develop a tool that, given a specific Swift project developed using Xcode, is able
to generate a MSE file containing a model that describes the project structure, according to the FAMIX standards.

4 PMSS: Parsing & Modeling Swift Systems

During the project we developed PMSS, a set of instruments to generate the model of a Swift system and analyze
it. The main module the we developed is called PMSSCore, it is written in Swift and it is built on top of SourceKit,
a framework for supporting IDE features. The PMSSCore module is then used in three different Swift applications
that we built. The first one is a command line tool, called pmss. pmss can be built on any macOS and Linux system
where SourceKit is installed. It allows developers to generate a MSE file directly from the command line and it is as
easy as ./pmss /path/to/xcodeproj.

The second application that we made is a macOS Cocoa app. The PMSSCore module is directly imported and
built inside the application and this allows the user to not just generate the MSE file but also to graphically visualize
the model in a 3D rendered view, directly from the application. The generated 3D model describes the user’s software
system using the metaphor of the city.[[7]

ece PMSS Model Visualizer

Figure 4. The representation of a model using our macOS app

The last application that we made using the PMSSCore module is a simple web-app written in Swift, using the
web framework Vaporﬂ Our web-app offers some APIs to generate and download a MSE file representing a Swift
system that is contained in a remote git repository. It is possible to choose the repository branch that we want to
model and, if the Xcode project is composed by multiple targets, the one that we prefer.

Using our web API we were able to migrate the “PMSS macOS Model Visualizer” to iOS, delegating the modeling
task to the server, since it is not possible to interact with SourceKit inside the iOS environment.

The Figure [5|shows how the PMSS toolkit is built.

8see: https://github.com/vapor/vapor

PMSS iOS

App
4
PMSS pmss web-
DISS macOS App app
4 4+ 2
PMSSCore
4
SourceKitten
4
SourceKit

Figure 5. The PMSS toolkit hierarchy

4.1 SourceKit: the core of Swift’s source code manipulation

SourceKit is a framework designed by Apple for supporting IDE features like indexing, syntax-coloring and code-
completion.

The stable C API for SourceKit is provided via the sourcekitd. framework which uses an XPC service for process
isolation and the libsourcekitdInProc.dylib library which is in-process.

SourceKit is capable of “indexing” source code, responding with which ranges of text contain what kinds of source
code. For example, SourceKit is capable of telling you that "the source code on line 2, column 9, is a reference to a
struct”.

4.2 SourceKitten: high-level SourceKit interaction

SourceKitten is a high level, community developed, binding framework used to interact with SourceKit. It is available
both as a command line tool and as framework. When we developed PMSSCore, we imported the SourceKittenFrame-
work directly in our project and we used it to handle the interaction with SourceKitFE]

SourceKitten wraps several SourceKit features and expose them hiding the complexity of the SourceKit APIs. In
the PMSS toolkit we used the SourceKittenFramework to index each source file of an Xcode project. From the result
of this operation we took the substructure tree and the entity tree of each class, struct and protocol of the file. The
substructure tree represents the structural information of the given Swift entity, like the accessibility level, the length
(in characters) of the entity, its name and type and the structure of the entities declared inside of the entity’s scope.

9see: https://github.com/apple/swift/tree/master/tools/SourceKit

10see: https://github.com/jpsim/SourceKitten

The entity tree, on the other side, indicates the usr (unique symbol resolution identier) of each entity and the
lines and offsets where the symbol, is declared and used. In the entity tree, similarly to the substructure tree, it is
possible to recursively retrive the entity information of each entity declared and used inside the given entity’s tree.

Lets see an example of how a very simple Swift class is represented once that SourceKit indexes it. Consider
the code Listing [4] as the content of the file Mario.swift. Mario is a simple class with one instance method and one

instance variable.

1 enum Mushroom {

2 case redMushroom

3 case greenMushroom

4+ 1

5

s class Mario {

7 var collectedStars = 0
8

9 func eatMushroom(_ mushroom: Mushroom) {
10

1 }

12 }

Listing 4. An example of a Swift source file

The code Listing[5]| provides the structure of the class Mario, showed in the code

10

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

o

2

"key.diagnostic_stage" : "source.diagnostic.stage.swift.parse",
"key.substructure" : [

{
"key
"key
"key
"key
"key
{

}
]’

"key.
"key.
"key.
"key .
"key.
"key.

}
]I
"key.off

.bodylength" : 93,

.nameoffset" : 6,

.accessibility" : "source.lang.swift.accessibility.internal",
.length" : 107,

.substructure" : [

"key.nameoffset" : 22,

"key.accessibility" : "source.lang.swift.accessibility.internal",
"key.length" : 22,

"key.name" : "collectedStars",

"key.kind" : "source.lang.swift.decl.var.instance",

"key.offset" : 18,
"key.namelength" : 14,
"key.setter_accessibility" : "source.lang.swift.accessibility.internal"

"key.bodylength" : 14,
"key.nameoffset" : 55,

"key.accessibility" : "source.lang.swift.accessibility.internal",
"key.length" : 55,
"key.substructure" : [
{
"key.nameoffset" : 0O,
"key.typename" : "Mushroom",
"key.length" : 20,
"key.name" : "mushroom",
"key.kind" : "source.lang.swift.decl.var.parameter",

"key.offset" : 67,
"key.namelength" : 0

}
1,
"key.name" : "eatMushroom(_:)",
"key.kind" : "source.lang.swift.decl.function.method.instance",

"key.namelength" : 33,
"key.offset" : 50,
"key.bodyoffset" : 90

runtime_name" : "_TtC8__main__5Mario",
name" : "Mario",

kind" : "source.lang.swift.decl.class",
namelength" : 5,

offset" : 0,

bodyoffset" : 13

set" : 0,

"key.length" : 108

Listing 5. The substructure tree generated by SourceKit

The code of the Listing [6] shows the entity tree of the class Mario.

11

3 "key.line" : 1,

4 "key.name" : "Mario",

5 "key.usr" : "s:5Mario",

6 "key.column" : 7,

7 "key.kind" : "source.lang.swift.decl.class",

8 "key.entities" : [

9 {

10 "key.line" : 2,

11 "key.name" : "collectedStars",

12 "key.usr" : "s:5Mariol4collectedStarsSi",

13 "key.column" : 9,

14 "key.kind" : "source.lang.swift.decl.var.instance"
15 })

16 {

17 "key.line" : 4,

18 "key.name" : "eatMushroom(_:)",

19 "key.usr" : "s:5MariolleatMushroomFVS_8MushroomT_",
20 "key.column" : 10,

21 "key.kind" : "source.lang.swift.decl.function.method.instance",
2 "key.entities" : [

23 {

24 "key.line" : 4,

2 "key.name" : "Mushroom",

2 "key.usr" : "s:8Mushroom",

27 "key.column" : 34,

28 "key.kind" : "source.lang.swift.ref.struct"
29 }

30]

31 }

32]

33 }

34]

Listing 6. The entity tree generated by SourceKit.

Using the substructure tree we can see that the structure Mario is the declaration of a class, its accessibility type is
internal and the total length of its body is 107 characters. At the same time, we can see the information of the Swift
structures declared inside Mario, for example, starCollected is a class’ property of type Int and its accessibility
is internal again while eatMushroom(_:) is a method. Since the substructure tree is a recursive model, we can see
that the method eatMushroom(_:) has a substructure as well and this goes on until the whole structure has been
explored.

In the entity tree we can see the line and the column where the specific identifier is written in the source code, for
example we can see that the declaration of the method eatMushroom(_:) starts at character 10 of line 4. Informations
like the usr are extremely useful to model the Invocation and Access FAMIX core entity.

At the same time, thanks to the recursively way that SourceKit uses to model these trees, it is possible to easily
walk through nested types and model Swift edge cases like the one showed in Listing|[7]

12

1

enum SomeEnum {
case someCase
case someOtherCase

static var someStaticComputedVariable: Int {
func aLocalMethod() -> Int {
class ALocallLocalClass {
lazy var somelLazyVariable: Int = {
return 1
10
}

return ALocallLocalClass().somelLazyVariable

}

return alLocalMethod()

Listing 7. Example of a model according to the FAMIX standard.

13

5 PMSS Model Visualizer: Our iOS and macOS Cocoa applications

Swift is mainly used in the Cocoa development environment so it makes sense to provide a native application for iOS
and macOS.

5.1 i0S

Since it is not yet possible to compile SourceKit inside an iOS application the app delegates to our pmss web-app the
generation of the MSE file. The user can specify a remote git repository that contains an Xcode project, the branch
name he wants to model and, if the Xcode project is composed by multiple targets, he can choose the one he prefers.
Once that the iOS application receives the MSE of the requested project, it saves it locally in order to let the user see
it offline and then it renders the 3D computed model of the city using SceneKit.

Figure 6. A system rendered in our iOS app

5.2 macOS

On macOS there is no need to use a server to generate the MSE file. SourceKit is already installed in the system. The
macOS version of the app allows the user to generate a MSE file starting directly from an .xcodeproj. The application
then works using the same logic of the iOS one, in fact, both the app are part of the same Xcode project and share
most of their code. Since the city is rendered starting from a MSE file, it is possible to load and analyze the model of
any software system, independently from the language, as long as it is formatted using the FAMIX meta-model. If
the MSE is generated directly by our application, starting from an Xcode project, it is also possible to visualize and
edit the source files.

14

PMSS Model Visualizer
G

1l Tree.swit

Il PMSSApp

I
/I Created by Alessio Buratti on 08.04.17.
n
l

import Foundation
Import Scenekit

11 Rectangle Packing Layout for a collection of elements.
11 More information at page 34 of thi

class PartiionTree {

.pd).

1 The left child of a *PartiionTree" node.
var left: PartiionTree?

1l The rigth child of a PartitionTree' node.
var rigth: Partition Tree?

1l The *coveredArea’ represents the bounds of the area that contains the
i sub rectangles, once that the layout has been comput
var coveredArea = Area.zero

1l The total area available for an element of the tree.
var area: Area

1 The “CovrecComputable® element (e.g. a ‘DistrictRepresentable’) that lies
Ul in that specific area of the layout.
weak var element: CovrecComputable?

1l The “origin’ of the area’

i1~ note: The coordinate system is the same of I0S. (0,0) indicates the top
U eft corner.
var origin = Posttion.zero

1/ Builds a PartitionTree’ for the specified *CovrecComputable’, usin
1" CovrecComputable subreas’ as the rectangle that need to be layed out in
i order to compute the area of “element

Ui~ parameter element: The "CovrecComputable which area needs to be computed.
rit(representing element: CovrecComputable)
fet sub s

ize > $0.1 }
|t maxWidth = subareas.map { $0.area.width }.reduce(0, +)

Ie maxHeigth = subareas.map { $0.area.heigth }.reduce(0, +)

area = Area(widih: maxWidth, heigth: maxHeigth)

subareasforEach(insert)

I Init a *node’ for the *ParttionTree"
- parameter area: The area of the no
-

meter origin: The top left comer coordinates of the area.
private init(area: Area, origin: Position) {

sollarea = area
selforigin = origin

Figure 7. A class of the PMSS Model Visualizer.

5.3 SceneKit: a high-level 3D graphics framework

SceneKit is an Apple framework to work with 3D scenes, it was first released for macOS in 2012, successively for
i0S in 2014, for tvOS in 2015 and finally for watchOS in 2016. It Is is written in Objective-C and it is built on top
of OpenGI["| and Metal™} It offers high-level APIs to describe scenes and animations [°} SceneKit incorporates a

physics engine and a particle generator and allows developer to easily work with scene components like geometry,
materials, lights, and cameras. [

Since the goal of our application is to be as clear as possible the whole graphic scene is composed by SceneKit
primitives, in particular boxes.

The code [§]shows a simple example of how it is possible to render a 3D cube using SceneKit.

1
1
1

Isee: https://www.opengl.org
2see: https://developer.apple.com/metal/

3see: https://developer.apple.com/documentation/scenekit
https://developer.apple.com/scenekit

15

1 let viewSize = CGSize(width: 300.0, height: 300.0)

s let view = SCNView(frame: NSRect(origin: CGPoint.zero, size: viewSize))
4+ let scene = SCNScene()

¢ // Creates a node that can be used to render a cube on the scene
7 let box = SCNBox(width: 10.0, height: 10.0, length: 10.0, chamferRadius: 0.5)
s Llet node = SCNNode(geometry: box)

1w // Adds the node that contains the box to the scene
1 scene.rootNode.addChildNode(node)

13 Vview.scene = scene
14 view.autoenablesDefaultLighting = true
15 view.allowsCameraControl = true

Listing 8. Code to add a simple cube in a SCNScene.

Figure 8. The view generated by the code

5.4 ARKit: augmented reality experience in any iOS application

ARKit is an Apple framework that provides APIs to add augmented reality experiences in an iOS app or game. |E| It
was announced during the 2017’s Worldwide Developer Conference. At the time of writing this document ARKit is
in beta.

The augmented reality feature in the iOS application was added as extra and offers no significant details to the
software visualization but since ARKit can interact with SceneKit through a SCNView subclass called ARSCNView, it
is easy to render a 3D model in an augmented reality experience once that the model is created.

5see: https://developer.apple.com/arkit/

16

Carrier &

Figure 9. The iOS application, using ARKit, to render a city on a real table.

6 Conclusion

Various research works indicate that the maintenance stage consumes most of the resources needed for a software
project [6]]. Software visualization tool, like CodeCity, can help developers finding solutions to reverse engineering
tasks /"]

Swift is a young language, but thanks to its modern features, its performance, its portability, and its simplicity we
do not doubt that it will be a main pillar in the future of programming languages and software engineering.

PMSS is a toolkit that can be very helpful in the reverse engineering of Cocoa applications and Swift systems in
general. Using powerful technologies like SourceKit, it is possible to generate a detailed model of a system, even
when Swift nested types would be very difficult to parse.

We believe PMSS is extremely useful for developers and engineers who are already familiar with the MOOSE
environment but, thanks to the native model visualizers developed for iOS and macOS it is also possible to analyze
Swift systems in a completely independent way.

PMSSCore APIs allow developers to directly include a modeling tool in their application without the need of using
a meta-model language like FAMIX.

Given the possibility to visualize and edit the source code using the PMSS Model Visualizer on macOS, our goal
for the future is to improve the application and add more advanced IDE features.

T6see: https:/ /wettel.github.io/codecity-experiment.html

17

References

[1] Apple Inc. The Swift Programming Language (Swift 3.1).
[2] A. Bergel. Java4Moose.
[3] E. Daka. Parsing and modeling c# systems. 2009.

[4] S. Ducasse, N. Anquetil, M. U. Bhatti, A. C. Hora, J. Laval, and T. Girba. Mse and famix 3.0: an interexchange
format and source code model family. 2011.

[5] S.Ducasse, M. Lanza, and S. Tichelaar. The moose reengineering environment. Smalltalk Chronicles, 3(2), 2001.

[6] J. C. Granja-Alvarez and M. J. Barranco-Garcia. A method for estimating maintenance cost in a software project:
a case study. Journal of Software Maintenance, 9(3):161-175, 1997.

[7] R. Wattel and M. Lanza. Software systems as cities. 2010.

18

	Introduction
	Goal
	Motivation

	State Of The Art
	Related work

	Swift and the meta-modeling tools in a nutshell
	The Swift Programming Language
	Some ``Swifty'' code examples

	FAMIX: a language independent meta-model
	MOOSE: a platform for software and data analysis

	PMSS: Parsing & Modeling Swift Systems
	SourceKit: the core of Swift's source code manipulation
	SourceKitten: high-level SourceKit interaction

	PMSS Model Visualizer: Our iOS and macOS Cocoa applications
	iOS
	macOS
	SceneKit: a high-level 3D graphics framework
	ARKit: augmented reality experience in any iOS application

	Conclusion

